Busca avançada
Ano de início
Entree


O problema do k-Servidor

Texto completo
Autor(es):
Mário César San Felice
Número total de Autores: 1
Tipo de documento: Dissertação de Mestrado
Imprenta: Campinas, SP.
Instituição: Universidade Estadual de Campinas (UNICAMP). Instituto de Computação
Data de defesa:
Membros da banca:
Orlando Lee; Cristina Gomes Fernandes; Luis Augusto Angelotti Meira; Flávio Keidi Miyazawa
Orientador: Orlando Lee
Resumo

Nesta dissertação consideramos o problema do k-Servidor. Neste problema temos k servidores em um espaço métrico e nosso objetivo e atender a uma seqüência de requisições, de modo a minimizar a distancia total percorrida pelos servidores. Dedicamos especial atenção a conjectura do k-Servidor: qualquer espaço métrico admite um algoritmo k-competitivo para o problema do k-Servidor. Este e um dos problemas mais importantes em aberto da area de computação online. O algoritmo da função trabalho, proposto por Chrobak e Larmore, e especialmente relevante para a conjectura. Isto porque foi provado que este algoritmo e k-competitivo para diversos casos particulares do problema do k-Servidor. Alem disso, acredita-se que este algoritmo e de fato k-competitivo para todo espaço métrico. Por isto, o entendimento deste algoritmo e central neste trabalho. Para analisar o algoritmo da função trabalho são utilizados diversos resultados auxiliares desenvolvidos por vários autores. Neste trabalho tentamos apresentar de forma coesa uma coletânea destes resultados. A partir desta mostramos uma prova do teorema de Koutsoupias e Papadimitriou: o algoritmo da função trabalho e (2k - 1)-competitivo para todo espaço métrico. Este e o resultado mais importante relacionado ao problema do k-Servidor. Alem disso, mostramos que a conjectura do k-Servidor vale para alguns casos particulares do problema (AU)

Processo FAPESP: 07/57997-6 - Computacao online e analise competitiva.
Beneficiário:Mário César San Felice
Linha de fomento: Bolsas no Brasil - Mestrado