Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Google Scholar, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Tailoring vibration mode shapes using topology optimization and functionally graded material concepts

Texto completo
Autor(es):
Montealegre Rubio, Wilfredo [1] ; Paulino, Glaucio H. [2, 3] ; Nelli Silva, Emilio Carlos [4]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Nacl Colombia, Fac Mines, Sch Mechatron, Medellin, Antioquia - Colombia
[2] Univ Illinois, Dept Civil & Environm Engn, Newmark Lab, Urbana, IL 61801 - USA
[3] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 - USA
[4] Univ Sao Paulo, Escola Politecn, Dept Mechatron & Mech Syst Engn, BR-05508900 Sao Paulo - Brazil
Número total de Afiliações: 4
Tipo de documento: Artigo Científico
Fonte: Smart Materials and Structures; v. 20, n. 2, p. 025009, 2011.
Citações Web of Science: 20
Resumo

Tailoring specified vibration modes is a requirement for designing piezoelectric devices aimed at dynamic-type applications. A technique for designing the shape of specified vibration modes is the topology optimization method (TOM) which finds an optimum material distribution inside a design domain to obtain a structure that vibrates according to specified eigenfrequencies and eigenmodes. Nevertheless, when the TOM is applied to dynamic problems, the well-known grayscale or intermediate material problem arises which can invalidate the post-processing of the optimal result. Thus, a more natural way for solving dynamic problems using TOM is to allow intermediate material values. This idea leads to the functionally graded material (FGM) concept. In fact, FGMs are materials whose properties and microstructure continuously change along a specific direction. Therefore, in this paper, an approach is presented for tailoring user-defined vibration modes, by applying the TOM and FGM concepts to design functionally graded piezoelectric transducers (FGPT) and non-piezoelectric structures (functionally graded structures-FGS) in order to achieve maximum and/or minimum vibration amplitudes at certain points of the structure, by simultaneously finding the topology and material gradation function. The optimization problem is solved by using sequential linear programming. Two-dimensional results are presented to illustrate the method. (AU)

Processo FAPESP: 08/51070-0 - Gláucio Hermogenes Paulino | University of Illinois at Urbana Champaign - Estados Unidos
Beneficiário:Emílio Carlos Nelli Silva
Modalidade de apoio: Auxílio à Pesquisa - Pesquisador Visitante - Internacional
Processo FAPESP: 05/01762-5 - Projeto de transdutores e MEMS piezelétricos baseados no conceito de materiais com gradação funcional e otimização topológica
Beneficiário:Wilfredo Montealegre Rubio
Modalidade de apoio: Bolsas no Brasil - Doutorado