Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Strategies for plane change of Earth orbits using lunar gravity and derived trajectories of family G

Texto completo
Autor(es):
de Melo, C. F. [1] ; Macau, E. E. N. [1] ; Winter, O. C. [2]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Natl Inst Space Res INPE, BR-12227010 Sao Jose Dos Campos, SP - Brazil
[2] UNESP, Grp Dinam Orbital & Planetol, BR-12516410 Guaratingueta, SP - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY; v. 103, n. 4, p. 281-299, APR 2009.
Citações Web of Science: 4
Resumo

The dynamics of the circular restricted three-body Earth-Moon-particle problem predicts the existence of the retrograde periodic orbits around the Lagrangian equilibrium point L1. Such orbits belong to the so-called family G (Broucke, Periodic orbits in the restricted three-body problem with Earth-Moon masses, JPL Technical Report 32-1168, 1968) and starting from them it is possible to define a set of trajectories that form round trip links between the Earth and the Moon. These links occur even with more complex dynamical systems as the complete Sun-Earth-Moon-particle problem. One of the most remarkable properties of these trajectories, observed for the four-body problem, is a meaningful inclination gain when they penetrate into the lunar sphere of influence and accomplish a swing-by with the Moon. This way, when one of these trajectories returns to the proximities of the Earth, it will be in a different orbital plane from its initial Earth orbit. In this work, we present studies that show the possibility of using this property mainly to accomplish transfer maneuvers between two Earth orbits with different altitudes and inclinations, with low cost, taking into account the dynamics of the four-body problem and of the swing-by as well. The results show that it is possible to design a set of nominal transfer trajectories that require Delta V (Total) less than conventional methods like Hohmann, bi-elliptic and bi-parabolic transfer with plane change. (AU)

Processo FAPESP: 05/05169-7 - Canais naturais de transferencia no problema dos tres corpos e guiagem caotica.
Beneficiário:Cristiano Fiorilo de Melo
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado