Modelagem matemática e aplicações de problemas de otimização relativos à busca de ...
Modelos matemáticos e estudo algorítmico para problemas de fuga de retângulos
Problemas extremais e probabilísticos em coloração de grafos
Texto completo | |
Autor(es): |
Bahiense, Laura
;
Manic, Gordana
;
Piva, Breno
;
de Souza, Cid C.
Número total de Autores: 4
|
Tipo de documento: | Artigo Científico |
Fonte: | DISCRETE APPLIED MATHEMATICS; v. 160, n. 18, p. 19-pg., 2012-12-01. |
Resumo | |
In the Maximum Common Edge Subgraph Problem (MCES), given two graphs G and H with the same number of vertices, one has to find a common subgraph of G and H (not necessarily induced) with the maximum number of edges. This problem arises in parallel programming environments, and was first defined in Bokhari (1981) [2]. This paper presents a new integer programming formulation for the MCES and a polyhedral study of this model. Several classes of valid inequalities are identified, most of which are shown to define facets. These findings were incorporated into a branch&cut algorithm we implemented. Experimental results with this algorithm are reported. (C) 2012 Elsevier B.V. All rights reserved. (AU) | |
Processo FAPESP: | 08/06508-8 - Otimização discreta e grafos: algoritmos, teoria e aplicações |
Beneficiário: | Gordana Manic |
Modalidade de apoio: | Auxílio à Pesquisa - Jovens Pesquisadores |