Busca avançada
Ano de início
Entree


On perturbed steepest descent methods with inexact line search for bilevel convex optimization

Texto completo
Autor(es):
Helou Neto, Elias Salomao ; De Pierro, Alvaro Rodolfo
Número total de Autores: 2
Tipo de documento: Artigo Científico
Fonte: OPTIMIZATION; v. 60, n. 8-9, p. 18-pg., 2011-01-01.
Resumo

We use a general framework for solving convex constrained optimization problems introduced in an earlier work to obtain algorithms for problems with a constraint set defined as the set of minimizers of a given function. Also, the algorithms allow the objective function to be decomposed as a sum of other convex functions that can be treated separately. We prove that the general algorithm converges to the optimum of the objective function over the set of minima of a convex Lipschitz-differentiable function chosen previously. When using orthogonal projections onto the convex constraints, we retrieve a Cimmino-like algorithm that converges to the optimum over the set of weighted least squares solutions. Furthermore, we show an important application of our approach to compressed sensing and inverse problems. (AU)

Processo FAPESP: 08/10030-6 - Métodos em otimização e viabilidade: aplicações em tomografia
Beneficiário:Elias Salomão Helou Neto
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado