Busca avançada
Ano de início
Entree


A Probabilistic Interpretation of Motion Correlation Selection Techniques

Texto completo
Autor(es):
Velloso, Eduardo ; Morimoto, Carlos Hitoshi ; ASSOC COMP MACHINERY
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: CHI '21: PROCEEDINGS OF THE 2021 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS; v. N/A, p. 13-pg., 2021-01-01.
Resumo

Motion correlation interfaces are those that present targets moving in different patterns, which the user can select by matching their motion. In this paper, we re-formulate the task of target selection as a probabilistic inference problem. We demonstrate that previous interaction techniques can be modelled using a Bayesian approach and that how modelling the selection task as transmission of information can help us make explicit the assumptions behind similarity measures. We propose ways of incorporating uncertainty into the decision-making process and demonstrate how the concept of entropy can illuminate the measurement of the quality of a design. We apply these techniques in a case study and suggest guidelines for future work. (AU)

Processo FAPESP: 17/50121-0 - AREThA: gaze interaction for the internet of things through augmented reality
Beneficiário:Carlos Hitoshi Morimoto
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 16/10148-3 - Interação pelo Olhar em Computação Vestível: uma Interface para a Internet das Coisas
Beneficiário:Carlos Hitoshi Morimoto
Modalidade de apoio: Auxílio à Pesquisa - Regular