Busca avançada
Ano de início
Entree


Assessment of Injury by Four Major Pests in Soybean Plants Using Hyperspectral Proximal Imaging

Texto completo
Autor(es):
Iost Filho, Fernando Henrique ; Pazini, Juliano de Bastos ; de Medeiros, Andre Dantas ; Rosalen, David Luciano ; Yamamoto, Pedro Takao
Número total de Autores: 5
Tipo de documento: Artigo Científico
Fonte: AGRONOMY-BASEL; v. 12, n. 7, p. 20-pg., 2022-07-01.
Resumo

Arthropod pests are among the major problems in soybean production and regular field sampling is required as a basis for decision-making for control. However, traditional sampling methods are laborious and time-consuming. Therefore, our goal is to evaluate hyperspectral remote sensing as a tool to establish reflectance patterns from soybean plants infested by various densities of two species of stinkbugs (Euschistus heros and Diceraeus melacanthus (Hemiptera: Pentatomidae)) and two species of caterpillars (Spodoptera eridania and Chrysodeixis includens (Lepidoptera: Noctuidae)). Bioassays were carried out in greenhouses with potted plants placed in cages with 5 plants infested with 0, 2, 5, and 10 insects. Plants were classified according to their reflectance, based on the acquisition of spectral data before and after infestation, using a hyperspectral push-broom spectral camera. Infestation by stinkbugs did not cause significative differences in the reflectance patterns of infested or non-infested plants. In contrast, caterpillars caused changes in the reflectance patterns, which were classified using a deep-learning approach based on a multilayer perceptron artificial neural network. High accuracies were achieved when the models classified low (0 + 2) or high (5 + 10) infestation and presence or absence of insects. This study provides an initial assessment to apply a non-invasive detection method to monitor caterpillars in soybean before causing economic damage. (AU)

Processo FAPESP: 19/26099-0 - Imageamento multi e hiperespectral aplicado na discriminação e estimativa do nível de infestação de artrópodes-praga na cultura da soja
Beneficiário:Juliano de Bastos Pazini
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 18/02317-5 - Centro de Excelência em Controle Biológico
Beneficiário:José Roberto Postali Parra
Modalidade de apoio: Auxílio à Pesquisa - Programa Centros de Pesquisa em Engenharia
Processo FAPESP: 17/19407-4 - Técnicas de sensoriamento remoto para monitoramento de artrópodes-praga em agricultura
Beneficiário:Pedro Takao Yamamoto
Modalidade de apoio: Auxílio à Pesquisa - Parceria para Inovação Tecnológica - PITE
Processo FAPESP: 19/26145-1 - Monitoramento de insetos pragas em soja utilizando sensoriamento remoto
Beneficiário:Fernando Henrique Iost Filho
Modalidade de apoio: Bolsas no Brasil - Doutorado