Busca avançada
Ano de início

Computer-Aided Diagnosis of Vertebral Compression Fractures Using Convolutional Neural Networks and Radiomics

Texto completo
Del Lama, Rafael Silva ; Candido, Raquel Mariana ; Chiari-Correia, Natalia Santana ; Nogueira-Barbosa, Marcello Henrique ; de Azevedo-Marques, Paulo Mazzoncini ; Tinos, Renato
Número total de Autores: 6
Tipo de documento: Artigo Científico
Fonte: JOURNAL OF DIGITAL IMAGING; v. 35, n. 3, p. 13-pg., 2022-02-07.

Vertebral Compression Fracture (VCF) occurs when the vertebral body partially collapses under the action of compressive forces. Non-traumatic VCFs can be secondary to osteoporosis fragility (benign VCFs) or tumors (malignant VCFs). The investigation of the etiology of non-traumatic VCFs is usually necessary, since treatment and prognosis are dependent on the VCF type. Currently, there has been great interest in using Convolutional Neural Networks (CNNs) for the classification of medical images because these networks allow the automatic extraction of useful features for the classification in a given problem. However, CNNs usually require large datasets that are often not available in medical applications. Besides, these networks generally do not use additional information that may be important for classification. A different approach is to classify the image based on a large number of predefined features, an approach known as radiomics. In this work, we propose a hybrid method for classifying VCFs that uses features from three different sources: i) intermediate layers of CNNs; ii) radiomics; iii) additional clinical and image histogram information. In the hybrid method proposed here, external features are inserted as additional inputs to the first dense layer of a CNN. A Genetic Algorithm is used to: i) select a subset of radiomic, clinical, and histogram features relevant to the classification of VCFs; ii) select hyper-parameters of the CNN. Experiments using different models indicate that combining information is interesting to improve the performance of the classifier. Besides, pre-trained CNNs presents better performance than CNNs trained from scratch on the classification of VCFs. (AU)

Processo FAPESP: 19/07665-4 - Centro de Inteligência Artificial
Beneficiário:Fabio Gagliardi Cozman
Modalidade de apoio: Auxílio à Pesquisa - Programa eScience e Data Science - Centros de Pesquisa em Engenharia
Processo FAPESP: 19/01219-2 - Algoritmos genéticos e redes neurais convolucionais para auxílio ao diagnóstico de fraturas vertebrais por compressão
Beneficiário:Rafael Silva Del Lama
Modalidade de apoio: Bolsas no Brasil - Mestrado
Processo FAPESP: 21/09720-2 - Projeto de algoritmos evolutivos gray-box e aplicações
Beneficiário:Renato Tinós
Modalidade de apoio: Auxílio à Pesquisa - Regular