Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Algebraic curves with automorphism groups of large prime order

Texto completo
Autor(es):
Arakelian, Nazar [1] ; Speziali, Pietro [2]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Univ Fed ABC, Ctr Matemat Comp & Cognicao, BR-09210580 Santo Andre, SP - Brazil
[2] Univ Sao Paulo, Inst Ciencias Matemat & Comp, BR-13560970 Sao Carlos, SP - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: MATHEMATISCHE ZEITSCHRIFT; v. 299, n. 3-4, p. 2005-2028, DEC 2021.
Citações Web of Science: 0
Resumo

Let X be a (projective, algebraic, non-singular, absolutely irreducible) curve of genus g defined over an algebraically closed field K of characteristic p >= 0, and let q be a prime dividing the cardinality of Aut(X). We say that X is a q-curve. Homma proved that either q <= g+1 or q = 2g + 1, and classified (2g + 1)-curves up to birational equivalence. In this note, we give the analogous classification for (g+1)-curves, including a characterization of hyperelliptic (g+1)-curves. Also, we provide the characterization of the full automorphism groups of q-curves for q=2g+1,g+1. Here, we make use of two different techniques: the former case is handled via a result by Vdovin bounding the size of abelian subgroups of finite simple groups, the second via the classification by Giulietti and Korchmaros of automorphism groups of curves of even genus. Finally, we give some partial results on the classification of q-curves for q = g,g-1. (AU)

Processo FAPESP: 17/18776-6 - Curvas algébricas em característica positiva e aplicações
Beneficiário:Pietro Speziali
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado