Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

A new simple proof for Lum-Chua's conjecture

Texto completo
Autor(es):
Carmona, Victoriano [1, 2] ; Fernandez-Sanchez, Fernando [3, 4] ; Novaes, Douglas D. [5]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Seville, Dept Matemat Aplicada 2, Escuela Politecn Super, Calle Virgen Africa 7, Seville 741011 - Spain
[2] Univ Seville, IMUS, Escuela Politecn Super, Calle Virgen Africa 7, Seville 741011 - Spain
[3] Univ Seville, Dept Matemat Aplicada 2, Escuela Tecn Super Ingn, Camino Descubrimientos S-N, Seville 41092 - Spain
[4] Univ Seville, IMUS, Escuela Tecn Super Ingn, Camino Descubrimientos S-N, Seville 41092 - Spain
[5] Univ Estadual Campinas, Dept Matemat, Rua Sergio Buarque de Holanda 651, Cidade Univ, BR-13083859 Campinas, SP - Brazil
Número total de Afiliações: 5
Tipo de documento: Artigo Científico
Fonte: NONLINEAR ANALYSIS-HYBRID SYSTEMS; v. 40, MAY 2021.
Citações Web of Science: 1
Resumo

The already proved Lum-Chua's conjecture says that a continuous planar piecewise linear differential system with two zones separated by a straight line has at most one limit cycle. In this paper, we provide a new proof by using a novel characterization for Poincare half-maps in planar linear systems. This proof is very short and straightforward, because this characterization avoids the inherent flaws of the usual methods to study piecewise linear systems (the appearance of large case-by-case analysis due to the unnecessary discrimination between the different spectra of the involved matrices, to deal with transcendental equations forced by the implicit occurrence of flight time,...). In addition, the application of the characterization allow us to prove that if a limit cycle exists, then it is hyperbolic and its stability is determined by a simple relationship between the parameters. To the best of our knowledge, the hyperbolicity of the limit cycle and this simple expression for its stability have not been pointed out before. (C) 2020 Elsevier Ltd. All rights reserved. (AU)

Processo FAPESP: 19/10269-3 - Teorias ergódica e qualitativa dos sistemas dinâmicos II
Beneficiário:Claudio Aguinaldo Buzzi
Linha de fomento: Auxílio à Pesquisa - Temático
Processo FAPESP: 18/13481-0 - Geometria de sistemas de controle, sistemas dinâmicos e estocásticos
Beneficiário:Luiz Antonio Barrera San Martin
Linha de fomento: Auxílio à Pesquisa - Temático
Processo FAPESP: 18/16430-8 - Dinâmica global das equações diferenciais não suaves
Beneficiário:Douglas Duarte Novaes
Linha de fomento: Auxílio à Pesquisa - Regular