Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Non-Invasive Characterization of Atrial Flutter Mechanisms Using Recurrence Quantification Analysis on the ECG: A Computational Study

Texto completo
Autor(es):
Luongo, Giorgio [1] ; Schuler, Steffen [1] ; Luik, Armin [2] ; Almeida, Tiago P. [3, 4, 5] ; Soriano, Diogo C. [6] ; Dossel, Olaf [1] ; Loewe, Axel [1]
Número total de Autores: 7
Afiliação do(s) autor(es):
[1] Karlsruhe Inst Technol, Inst Biomed Engn, D-76131 Karlsruhe - Germany
[2] Stdt Klinikum Karlsruhe, Med Klin 4, Karlsruhe - Germany
[3] Univ Leicester, Dept Cardiovasc Sci, Leicester, Leics - England
[4] Univ Leicester, Sch Engn, Leicester, Leics - England
[5] Inst Tecnol Aeronaut, Elect Engn Div, Sao Jose Dos Campos - Brazil
[6] ABC Fed Univ, Engn Modelling & Appl Social Sci Ctr, Santo Andre, SP - Brazil
Número total de Afiliações: 6
Tipo de documento: Artigo Científico
Fonte: IEEE Transactions on Biomedical Engineering; v. 68, n. 3, p. 914-925, MAR 2021.
Citações Web of Science: 0
Resumo

Objective: Atrial flutter (AFl) is a common arrhythmia that can be categorized according to different self-sustained electrophysiological mechanisms. The non-invasive discrimination of such mechanisms would greatly benefit ablative methods for AFl therapy as the driving mechanisms would be described prior to the invasive procedure, helping to guide ablation. In the present work, we sought to implement recurrence quantification analysis (RQA) on 12-lead ECG signals from a computational framework to discriminate different electrophysiological mechanisms sustaining AFl. Methods: 20 different AFl mechanisms were generated in 8 atrial models and were propagated into 8 torso models via forward solution, resulting in 1,256 sets of 12-lead ECG signals. Principal component analysis was applied on the 12-lead ECGs, and six RQA-based features were extracted from the most significant principal component scores in two different approaches: individual component RQA and spatial reduced RQA. Results: In both approaches, RQA-based features were significantly sensitive to the dynamic structures underlying different AFl mechanisms. Hit rate as high as 67.7% was achieved when discriminating the 20 AFl mechanisms. RQA-based features estimated for a clinical sample suggested high agreement with the results found in the computational framework. Conclusion: RQA has been shown an effective method to distinguish different AFl electrophysiological mechanisms in a non-invasive computational framework. A clinical 12-lead ECG used as proof of concept showed the value of both the simulations and the methods. Significance: The non-invasive discrimination of AFl mechanisms helps to delineate the ablation strategy, reducing time and resources required to conduct invasive cardiac mapping and ablation procedures. (AU)

Processo FAPESP: 19/09512-0 - Análise não linear da conectividade funcional dinâmica via quantificação de recorrência e sua aplicação em interfaces cérebro-computador
Beneficiário:Diogo Coutinho Soriano
Linha de fomento: Bolsas no Exterior - Pesquisa
Processo FAPESP: 18/02251-4 - Estudo da dinâmica da fibrilação atrial crônica utilizando modelos computacionais e análise de quantificação de recorrência
Beneficiário:Tiago Paggi de Almeida
Linha de fomento: Bolsas no Exterior - Estágio de Pesquisa - Pós-Doutorado
Processo FAPESP: 17/00319-8 - Identificação do substrato atrial em pacientes com fibrilação atrial crônica utilizando modelos estatísticos multivariados e múltiplos atributos de eletrogramas atriais.
Beneficiário:Tiago Paggi de Almeida
Linha de fomento: Bolsas no Brasil - Pós-Doutorado