Multispectral and X-ray images for characterizatio... - BV FAPESP
Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Multispectral and X-ray images for characterization of Jatropha curcas L. seed quality

Texto completo
Autor(es):
Martins Bianchini, Vitor de Jesus [1] ; Mascarin, Gabriel Moura [2] ; Aparecida Santos Silva, Lucia Cristina [3] ; Arthur, Valter [3] ; Carstensen, Jens Michael [4] ; Boelt, Birte [5] ; da Silva, Clissia Barboza [3]
Número total de Autores: 7
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Dept Crop Sci, Coll Agr Luiz de Queiroz, 11 Padua Dias Ave, Box 9, BR-13418900 Piracicaba, SP - Brazil
[2] Brazilian Agr Res Corp, Embrapa Environm, Lab Environm Microbiol, Rodovia SP 340, Km 127-5, BR-13820000 Jaguariuna - Brazil
[3] Univ Sao Paulo, Lab Radiobiol & Environm, Ctr Nucl Energy Agr, 303 Centenario Ave, BR-13416000 Piracicaba, SP - Brazil
[4] Tech Univ Denmark, DK-2800 Lyngby - Denmark
[5] Aarhus Univ, Dept Agroecol Sci & Technol, DK-4200 Slagelse - Denmark
Número total de Afiliações: 5
Tipo de documento: Artigo Científico
Fonte: PLANT METHODS; v. 17, n. 1 JAN 26 2021.
Citações Web of Science: 2
Resumo

BackgroundThe use of non-destructive methods with less human interference is of great interest in agricultural industry and crop breeding. Modern imaging technologies enable the automatic visualization of multi-parameter for characterization of biological samples, reducing subjectivity and optimizing the analysis process. Furthermore, the combination of two or more imaging techniques has contributed to discovering new physicochemical tools and interpreting datasets in real time.ResultsWe present a new method for automatic characterization of seed quality based on the combination of multispectral and X-ray imaging technologies. We proposed an approach using X-ray images to investigate internal tissues because seed surface profile can be negatively affected, but without reaching important internal regions of seeds. An oilseed plant (Jatropha curcas) was used as a model species, which also serves as a multi-purposed crop of economic importance worldwide. Our studies included the application of a normalized canonical discriminant analyses (nCDA) algorithm as a supervised transformation building method to obtain spatial and spectral patterns on different seedlots. We developed classification models using reflectance data and X-ray classes based on linear discriminant analysis (LDA). The classification models, individually or combined, showed high accuracy (>0.96) using reflectance at 940 nm and X-ray data to predict quality traits such as normal seedlings, abnormal seedlings and dead seeds.ConclusionsMultispectral and X-ray imaging have a strong relationship with seed physiological performance. Reflectance at 940 nm and X-ray data can efficiently predict seed quality attributes. These techniques can be alternative methods for rapid, efficient, sustainable and non-destructive characterization of seed quality in the future, overcoming the intrinsic subjectivity of the conventional seed quality analysis. (AU)

Processo FAPESP: 18/03807-6 - EMU concedido no processo 2017/15220-7: multiFocus digital radiography system
Beneficiário:Clíssia Barboza Mastrangelo
Modalidade de apoio: Auxílio à Pesquisa - Programa Equipamentos Multiusuários
Processo FAPESP: 19/04127-1 - Aplicação de técnicas analíticas de imagem por ressonância magnética e imagem multiespectral para avaliação de sementes de pinhão-manso
Beneficiário:Vitor de Jesus Martins Bianchini
Modalidade de apoio: Bolsas no Brasil - Iniciação Científica
Processo FAPESP: 17/15220-7 - Métodos de análise de imagens não destrutivos para avaliação da qualidade de sementes
Beneficiário:Clíssia Barboza Mastrangelo
Modalidade de apoio: Auxílio à Pesquisa - Jovens Pesquisadores
Processo FAPESP: 18/03802-4 - EMU concedido no processo 2017/15220-7: sistema de imagem VideoMeterLab
Beneficiário:Clíssia Barboza Mastrangelo
Modalidade de apoio: Auxílio à Pesquisa - Programa Equipamentos Multiusuários
Processo FAPESP: 18/01774-3 - Métodos de análise de imagens não destrutivos para avaliação da qualidade de sementes
Beneficiário:Clíssia Barboza Mastrangelo
Modalidade de apoio: Bolsas no Brasil - Jovens Pesquisadores