Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Likelihood-based inference for spatiotemporal data with censored and missing responses

Texto completo
Autor(es):
Valeriano, Katherine A. L. [1] ; Lachos, Victor H. [2] ; Prates, Marcos O. [3] ; Matos, Larissa A. [1]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Estadual Campinas, Dept Stat, Sao Paulo, SP - Brazil
[2] Univ Connecticut, Dept Stat, Storrs, CT 06269 - USA
[3] Univ Fed Minas Gerais, Dept Stat, Belo Horizonte, MG - Brazil
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: ENVIRONMETRICS; v. 32, n. 3 DEC 2020.
Citações Web of Science: 0
Resumo

This paper proposes an alternative method to deal with spatiotemporal data with censored and missing responses using the SAEM algorithm. This algorithm is a stochastic approximation of the widely used EM algorithm and is an important tool for models in which the E-step does not have an analytic form. Besides the algorithm developed to estimate the model parameters from a likelihood-based perspective, we present analytical expressions to compute the observed information matrix. Global influence measures are also developed and presented. Several simulation studies are conducted to examine the asymptotic properties of the SAEM estimates. The proposed method is illustrated by environmental data analysis. The computing codes are implemented in the new R package StempCens. (AU)

Processo FAPESP: 18/05013-7 - Modelos semi-paramétricos de efeitos mistos com respostas múltiplas censuradas sob a classe de distribuições misturas de escala normal
Beneficiário:Larissa Avila Matos
Linha de fomento: Auxílio à Pesquisa - Pesquisador Visitante - Internacional