Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Heat conduction in harmonic chains with Levy-type disorder

Texto completo
Autor(es):
Herrera-Gonzalez, I. F. [1] ; Mendez-Bermudez, J. A. [2, 3]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Univ Popular Autonoma Estado Puebla, Dept Ingn, Puebla 72410, Pue - Mexico
[2] Benemerita Univ Autonoma Puebla, Inst Fis, Apartado Postal J-48, Puebla 72570 - Mexico
[3] Univ Sao Paulo, Inst Ciencias Matemat & Comp, Dept Matemat Aplicada & Estat, Campus Sao Carlos, Caixa Postal 668, BR-13560970 Sao Carlos, SP - Brazil
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: Physical Review E; v. 100, n. 5 NOV 8 2019.
Citações Web of Science: 0
Resumo

We consider heat transport in a one-dimensional harmonic chain attached at its ends to Langevin heat baths. The harmonic chain has mass impurities where the separation d between any two successive impurities is randomly distributed according to a power-law distribution P(d) similar to 1/d(alpha+1), being alpha > 0. In the regime where the first moment of the distribution is well defined (1 < alpha < 2) the thermal conductivity kappa scales with the system size N as kappa similar to N(alpha-3)/alpha for fixed boundary conditions, whereas for free boundary conditions kappa similar to N(alpha-1)/alpha if N >> 1. When alpha = 2, the inverse localization length lambda scales with the frequency omega as lambda similar to omega(2) In omega in the low-frequency regime, due to the logarithmic correction, the size scaling law of the thermal conductivity acquires a nonclosed form. When alpha > 2, the thermal conductivity scales as in the uncorrelated disorder case. The situation alpha < 1 is only analyzed numerically, where lambda(omega) similar to omega(2)(-alpha), which leads to the following asymptotic thermal conductivity: kappa similar to N-(alpha+1)/(2-alpha) for fixed boundary conditions and kappa similar to N(1-alpha)/(2-alpha) for free boundary conditions. (AU)

Processo FAPESP: 19/06931-2 - Métodos de matrizes aleatórias em redes complexas
Beneficiário:Francisco Aparecido Rodrigues
Linha de fomento: Auxílio à Pesquisa - Pesquisador Visitante - Internacional