Assessment of complementarity of WGCNA and NERI re... - BV FAPESP
Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Assessment of complementarity of WGCNA and NERI results for identification of modules associated to schizophrenia spectrum disorders

Texto completo
Autor(es):
Feltrin, Arthur Sant'Anna [1] ; Tahira, Ana Carolina [2] ; Simoes, Sergio Nery [3] ; Brentani, Helena [2, 4, 5] ; Martins, Jr., David Correa [1]
Número total de Autores: 5
Afiliação do(s) autor(es):
[1] Fed Univ ABC UFABC, Ctr Math Computat & Cognit, Santo Andre, SP - Brazil
[2] Univ Sao Paulo, Fac Med, Hosp Clin HCFMUSP, LIM23, Inst Psiquiatria, Sao Paulo, SP - Brazil
[3] Fed Inst Educ Sci & Technol Espirito Santo, Serra, ES - Brazil
[4] Univ Sao Paulo, Fac Med, Hosp Clin HCFMUSP, Inst Psiquiatria, Sao Paulo, SP - Brazil
[5] Natl Inst Dev Psychiat Children & Adolescents INP, Sao Paulo, SP - Brazil
Número total de Afiliações: 5
Tipo de documento: Artigo Científico
Fonte: PLoS One; v. 14, n. 1 JAN 15 2019.
Citações Web of Science: 0
Resumo

Psychiatric disorders involve both changes in multiple genes as well different types of variations. As such, gene co-expression networks allowed the comparison of different stages and parts of the brain contributing to an integrated view of genetic variation. Two methods based on co-expression networks presents appealing results: Weighted Gene Correlation Network Analysis (WGCNA) and Network-Medicine Relative Importance (NERI). By selecting two different gene expression databases related to schizophrenia, we evaluated the biological modules selected by both WGCNA and NERI along these databases as well combining both WGCNA and NERI results (WGCNA-NERI). Also we conducted a enrichment analysis for the identification of partial biological function of each result (as well a replication analysis). To appraise the accuracy of whether both algorithms (as well our approach, WGCNA-NERI) were pointing to genes related to schizophrenia and its complex genetic architecture we conducted the MSET analysis, based on a reference gene list of schizophrenia database (SZDB) related to DNA Methylation, Exome, GWAS as well as copy number variation mutation studies. The WGCNA results were more associated with inflammatory pathways and immune system response; NERI obtained genes related with cellular regulation, embryological pathways e cellular growth factors. Only NERI were able to provide a statistical meaningful results to the MSET analysis (for Methylation and de novo mutations data). However, combining WGCNA and NERI provided a much more larger overlap in these two categories and additionally on Transcriptome database. Our study suggests that using both methods in combination is better for establishing a group of modules and pathways related to a complex disease than using each method individually. NERI is available at: https://bitbucket.org/sergionery/neri. (AU)

Processo FAPESP: 11/04956-6 - Variações no Número de Cópias no Genoma de Pacientes com Transtornos do Espectro Autista verbais e não verbais
Beneficiário:Viviane Neri de Souza Reis
Modalidade de apoio: Bolsas no Brasil - Mestrado
Processo FAPESP: 11/50761-2 - Modelos e métodos de e-Science para ciências da vida e agrárias
Beneficiário:Roberto Marcondes Cesar Junior
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 14/00041-1 - Estudo de coexpressão de genes do cromossomo Y e genes autossômicos e sua relação com o transtorno do espectro autista (TEA)
Beneficiário:Ana Carolina Tahira
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 14/10488-3 - Comparação de métodos de priorização de genes associados a transtornos do neurodesenvolvimento
Beneficiário:Arthur Sant'Anna Feltrin
Modalidade de apoio: Bolsas no Brasil - Mestrado
Processo FAPESP: 15/01587-0 - Armazenagem, modelagem e análise de sistemas dinâmicos para aplicações em e-Science
Beneficiário:João Eduardo Ferreira
Modalidade de apoio: Auxílio à Pesquisa - Programa eScience e Data Science - Temático