4-Phenyl-1,3-thiazole-2-amines as scaffolds for ne... - BV FAPESP
Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

4-Phenyl-1,3-thiazole-2-amines as scaffolds for new antileishmanial agents

Texto completo
Autor(es):
Rodrigues, Carina Agostinho [1] ; dos Santos, Paloma Freire [1] ; Legramanti da Costa, Marcela Oliveira [1] ; Amorim Pavani, Thais Fernanda [1] ; Xander, Patricia [2] ; Geraldo, Mariana Marques [2] ; Mengarda, Ana [3] ; de Moraes, Josue [3] ; Galasse Rando, Daniela Goncales [1]
Número total de Autores: 9
Afiliação do(s) autor(es):
[1] Fed Univ Sao Paulo UNIFESP, Inst Environm Chem & Pharmaceut Sci, Dept Pharmaceut Sci, Chem & Pharmaceut Res Grp, Rua Sao Nicolau 210, 20 Andar, BR-09913030 Diadema, SP - Brazil
[2] Fed Univ Sao Paulo UNIFESP, Inst Environm Chem & Pharmaceut Sci, Dept Pharmaceut Sci, Lab Cellular Immunol & Biochem Fungi, Rua Sao Nicolau 210, 20 Andar, BR-09913030 Diadema, SP - Brazil
[3] Univ Guarulhos, Res Grp Neglected Dis, Praca Tereza Cristina 88, BR-07020071 Guarulhos, SP - Brazil
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: Journal of Venomous Animals and Toxins including Tropical Diseases; v. 24, SEP 10 2018.
Citações Web of Science: 7
Resumo

Abstract Background: There is still a need for new alternatives in pharmacological therapy for neglected diseases, as the drugs available show high toxicity and parenteral administration. That is the case for the treatment of leishmaniasis, particularly to the cutaneous clinical form of the disease. In this study, we present the synthesis and biological screening of eight 4-phenyl-1,3-thiazol-2-amines assayed against Leishmania amazonensis. Herein we propose that these compounds are good starting points for the search of new antileishmanial drugs by demonstrating some of the structural aspects which could interfere with the observed activity, as well as suggesting potential macromolecular targets. Methods: The compounds were easily synthesized by the methodology of Hantzsch and Weber, had their purities determined by Gas Chromatography-Mass spectrometry and assayed against the promastigote forms of Leishmania amazonensis as well as against two white cell lines (L929 and THP-1) and the monkey's kidney Vero cells. PrestoBlue® and MTT viability assays were the methodologies applied to measure the antileishmanial and cytotoxic activities, respectively. A molecular modeling target fishing study was performed aiming to propose potential macromolecular targets which could explain the observed biological behavior. Results: Four out of the eight compounds tested exhibited important anti-promastigote activity associated with good selectivity indexes when considering Vero cells. For the most promising compound, compound 6, IC50 against promastigotes was 20.78 while SI was 5.69. Compounds 3 (IC50: 46.63 μM; SI: 26.11) and 4 (IC50: 53.12 μM; SI: 4.80) also presented important biological behavior. A target fishing study suggested that S-methyl-5-thioadenosine phosphorylase is a potential target to these compounds, which could be explored to enhance activity and decrease the potential toxic side effects. Conclusions: This study shows that 4-phenyl-1,3-thiazol-2-amines could be good scaffolds to the development of new antileishmanial agents. The S-methyl-5-thioadenosine phosphorylase could be one of the macromolecular targets involved in the action. (AU)

Processo FAPESP: 13/01875-0 - Síntese paralela, screening in vitro e estudos de relação estrutura-atividade de nitroderivados ativos contra patógenos infectantes de macrófagos: Mycobacterium tuberculosis formas NRP e Leishmania sp
Beneficiário:Daniela Goncales Galasse Rando
Modalidade de apoio: Auxílio à Pesquisa - Regular