Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Ergodic properties of skew products in infinite measure

Texto completo
Autor(es):
Cirilo, Patricia ; Lima, Yuri ; Pujals, Enrique
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: Israel Journal of Mathematics; v. 214, n. 1, p. 43-66, JUL 2016.
Citações Web of Science: 0
Resumo

Let (a{''}broken vertical bar, A mu) be a shift of finite type with a Markov probability, and (Y, nu) a non-atomic standard measure space. For each symbol i of the symbolic space, let I broken vertical bar (i) be a non-singular automorphism of (Y, nu). We study skew products of the form (omega, y) a dagger broken vertical bar (sigma omega, I broken vertical bar(omega 0) (y)), where sigma is the shift map on (a{''}broken vertical bar, A mu). We prove that, when the skew product is recurrent, it is ergodic if and only if the I broken vertical bar (i) `s have no common non-trivial invariant set. In the second part we study the skew product when a{''}broken vertical bar = [0, 1](Z), A mu is a Bernoulli measure, and I broken vertical bar(0),I broken vertical bar(1) are R-extensions of a same uniquely ergodic probability-preserving automorphism. We prove that, for a large class of roof functions, the skew product is rationally ergodic with return sequence asymptotic to , and its trajectories satisfy the central, functional central and local limit theorem. (AU)

Processo FAPESP: 11/11663-5 - Propriedades ergódicas e algébricas para sistemas dinâmicos com medida invariante infinita
Beneficiário:Patricia Romano Cirilo
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado