Busca avançada
Ano de início
Entree


Algoritmos Evolutivos aplicados ao Classificador baseado em Segmentos de Reta

Texto completo
Autor(es):
Rosario Alejandra Medina Rodríguez
Número total de Autores: 1
Tipo de documento: Dissertação de Mestrado
Imprenta: São Paulo.
Instituição: Universidade de São Paulo (USP). Instituto de Matemática e Estatística (IME/SBI)
Data de defesa:
Membros da banca:
Ronaldo Fumio Hashimoto; Roberto Hirata Junior; Anna Helena Reali Costa
Orientador: Ronaldo Fumio Hashimoto
Resumo

Nos ultimos anos o uso de tecnicas de aprendizado computacional tornou se uma das tarefas comumente realizadas, pois tem inumeras aplicacoes de reconhecimento de padroes, tais como: reco- nhecimento de voz, classificacao de texto, reconhecimento facial, diagnostico por imagens medicas, entre outras. Dessa forma, um grande numero de tecnicas que lidam com este tipo de problema tem sido desenvolvido ate o momento. Neste trabalho apresentamos uma alternativa para melhorar a taxa acerto de classificacao do classificador binario SLS, que apresentou resultados comparaveis com as SVMs. Nesse metodo, o Gradiente Descendente e utilizado para otimizar a posicao final dos conjuntos de segmentos de reta que representarao cada classe. Embora convirja rapidamente a um valor otimo, muitas vezes e possivel o algoritmo parar em uma regiao de otimos locais, que nao representa o minimo global. Dado esse problema, foram utilizados diferentes algoritmos evolutivos em combinacao com o Gradiente Descendente a fim de melhorar a acuracia do classificador SLS. Adicionalmente a aplicacao de algoritmos evolutivos na fase de treinamento do classificador SLS, foram exploradas duas propostas: (i) explorar o uso de diferente numero de segmentos de reta para representar a distribuicao de dados de cada classe. Dado que no algoritmo original do metodo SLS o numero de segmentos de reta e igual para cada classe, o qual pode significar alguma perda de acuracia ou sobreposicao dos segmentos de reta; (ii) estimar a melhor combinacao de segmentos de reta a serem usados para cada classe. O uso de diferentes quantidades de segmentos de reta por classe pode ser de ajuda na obtencao de melhores porcentagens de acerto, mas determinar uma quantidade otima que permita representar cada classe, e um trabalho dificil. Assim, usamos o algoritmo X-Means, que e um algoritmo de agrupamento, para estimar o numero de segmentos de reta. As propostas exibiram bons resultados que possibilitam a aplicacao do classificador SLS, com um algoritmo de treinamento hibrido, em problemas reais. (AU)

Processo FAPESP: 09/12253-5 - Aspectos Teóricos e Práticos do Classificador Baseado em Segmentos de Retas em Problemas de Multiclassificação
Beneficiário:Rosario Alejandra Medina Rodríguez
Linha de fomento: Bolsas no Brasil - Mestrado