Busca avançada
Ano de início
Entree


Multi-objective optimization based on a multi-criteria estimation of distribution

Texto completo
Autor(es):
Pedro Mariano Sousa Bezerra
Número total de Autores: 1
Tipo de documento: Dissertação de Mestrado
Imprenta: Campinas, SP.
Instituição: Universidade Estadual de Campinas (UNICAMP). Faculdade de Engenharia Elétrica e de Computação
Data de defesa:
Membros da banca:
Fernando José Von Zuben; Renato Antonio Krohling; Levy Boccato
Orientador: Guilherme Palermo Coelho; Fernando José Von Zuben
Resumo

Considerando as meta-heurísticas estado-da-arte para otimização multiobjetivo (MOO, do inglês Multi-Objective Optimization), como NSGA-II, NSGA-III, SPEA2 e SMS-EMOA, apenas um critério de preferência por vez é levado em conta para classificar soluções ao longo do processo de busca. Neste trabalho, alguns dos critérios de seleção adotados por esses algoritmos estado-da-arte, incluindo classe de não-dominância e contribuição para a métrica de hipervolume, são utilizados em conjunto por uma técnica de tomada de decisão multicritério (MCDM, do inglês Multi-Criteria Decision Making), mais especificamente o algoritmo TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution), responsável por ordenar todas as soluções candidatas. O algoritmo TOPSIS permite o uso de abordagens baseadas em múltiplas preferências, ao invés de apenas uma como na maioria das técnicas híbridas de MOO e MCDM. Cada preferência é tratada como um critério com uma importância relativa determinada pelo tomador de decisão. Novas soluções candidatas são então amostradas por meio de um modelo de distribuição, neste caso uma mistura de Gaussianas, obtido a partir da lista ordenada de soluções candidatas produzida pelo TOPSIS. Essencialmente, um operador de roleta é utilizado para selecionar um par de soluções candidatas de acordo com o seu mérito relativo, adequadamente determinado pelo TOPSIS, e então uma novo par de soluções candidatas é gerado a partir de perturbações Gaussianas centradas nas correspondentes soluções candidatas escolhidas. O desvio padrão das funções Gaussianas é definido em função da distância das soluções no espaço de decisão. Também foram utilizados operadores para auxiliar a busca a atingir regiões potencialmente promissoras do espaço de busca que ainda não foram mapeadas pelo modelo de distribuição. Embora houvesse outras opções, optou-se por seguir a estrutura do algoritmo NSGA-II, também adotada no algoritmo NSGA-III, como base para o método aqui proposto, denominado MOMCEDA (Multi-Objective Multi-Criteria Estimation of Distribution Algorithm). Assim, os aspectos distintos da proposta, quando comparada com o NSGA-II e o NSGA-III, são a forma como a população de soluções candidatas é ordenada e a estratégia adotada para gerar novos indivíduos. Os resultados nos problemas de teste ZDT mostram claramente que nosso método é superior aos algoritmos NSGA- II e NSGA-III, e é competitivo com outras meta-heurísticas bem estabelecidas na literatura de otimização multiobjetivo, levando em conta as métricas de convergência, hipervolume e a medida IGD (AU)

Processo FAPESP: 16/21031-0 - Otimização multiobjetivo com estimação de distribuição guiada por tomada de decisão multicritério
Beneficiário:Pedro Mariano Sousa Bezerra
Modalidade de apoio: Bolsas no Brasil - Mestrado