Busca avançada
Ano de início
Entree


Reticulados, projeções e aplicações à teoria da informação

Texto completo
Autor(es):
Antonio Carlos de Andrade Campello Júnior
Número total de Autores: 1
Tipo de documento: Tese de Doutorado
Imprenta: Campinas, SP.
Instituição: Universidade Estadual de Campinas (UNICAMP). Instituto de Matemática, Estatística e Computação Científica
Data de defesa:
Membros da banca:
Sueli Irene Rodrigues Costa; Jean Claude Belfiore; Renato Portugal; Marcelo Muniz Silva Alves; Danilo Silva
Orientador: Sueli Irene Rodrigues Costa; João Eloir Strapasson
Resumo

O conteúdo desta tese reside na interface entre Matemática Discreta (particularmente reticulados) e Teoria da Informação. Dividimos as contribuições originais do trabalho em quatro capítulos, de modo que os dois primeiros são relativos a resultados teóricos acerca de duas importantes classes de reticulados (os reticulados q-ários e os reticulados projeção), e os dois últimos referem-se a aplicações em codificação contínua fonte-canal. Nos primeiros capítulos, exibimos resultados sobre decodificação de reticulados q-ários e sobre ladrilhamentos associados a códigos corretores de erros perfeitos na norma l_p. No que tange a reticulados projeção, nossas contribuições incluem o estudo de sequências de projeção de um dado reticulado n-dimensional convergindo para qualquer reticulado k-dimensional fixado, k < n, incluindo uma análise de convergência de tais sequências. Esses novos resultados relativos a projeções estendem e aprimoram recentes trabalhos no tema e são elementos de base para as aplicações consideradas no restante da tese. Nos dois últimos capítulos, consideramos o problema de transmitir uma fonte com alfabeto contínuo através de um canal gaussiano no caso em que a dimensão da fonte, k, é menor que a dimensão do canal, n. Para fontes unidimensionais, exibimos códigos baseados em curvas na superfície de toros planares com performance significativamente superior aos propostos anteriormente na literatura no que diz respeito ao erro quadrático médio atingido. Para k > 1, mostramos como aplicar projeções de reticulados para obter códigos cujo erro quadrático médio possui decaimento ótimo com respeito à relação sinal-ruído do canal (chamados de assintoticamente ótimos). Através de técnicas provenientes da bela teoria de dissecção de poliedros, apresentamos as primeiras construções de códigos assintoticamente ótimos para fontes com dimensão maior do que 1 (AU)

Processo FAPESP: 11/22044-4 - Reticulados e códigos: perspectivas em criptografia
Beneficiário:Antonio Carlos de Andrade Campello Junior
Modalidade de apoio: Bolsas no Brasil - Doutorado Direto