Busca avançada
Ano de início
Entree

Aplicações de Grupos de Lie a equações diferenciais parciais descrevendo sistemas evolutivos bifurcantes com simetria pré-determinada

Processo: 00/09944-1
Modalidade de apoio:Bolsas no Brasil - Doutorado
Vigência (Início): 01 de fevereiro de 2001
Vigência (Término): 31 de janeiro de 2002
Área do conhecimento:Ciências Exatas e da Terra - Física - Física Geral
Pesquisador responsável:Esmerindo de Sousa Bernardes
Beneficiário:Marconi Soares Barbosa
Instituição Sede: Instituto de Física de São Carlos (IFSC). Universidade de São Paulo (USP). São Carlos , SP, Brasil
Assunto(s):Grupos de Lie   Invariantes
Palavra(s)-Chave do Pesquisador:Algebras Simpleticas | Equacoes Diferenciais Parciais | Grupos E Algebras De Lie | Invariantes Infinitesimais | Simetria | Sistemas Bifurcantes

Resumo

O plano de trabalho do presente projeto tem como objetivos: I) Cálculo de invariantes infinitesimais para as álgebras Sp(2n), n=1,2,3, e G2, usando realizações por operadores de tipo bosônico; II) Construção de formas gerais de sistemas de equações diferenciais parciais com as simetrias acima; III) Adaptação da forma geral desses sistemas de equações diferenciais parciais às diversas cadeias algébricas possíveis. A escolha das álgebras simpléticas e a álgebra excepcional G2 como ponto de partida se deve ao fato delas estarem associadas a processos nucleares, atômicos e moleculares. (AU)

Matéria(s) publicada(s) na Agência FAPESP sobre a bolsa:
Mais itensMenos itens
Matéria(s) publicada(s) em Outras Mídias ( ):
Mais itensMenos itens
VEICULO: TITULO (DATA)
VEICULO: TITULO (DATA)

Publicações acadêmicas
(Referências obtidas automaticamente das Instituições de Ensino e Pesquisa do Estado de São Paulo)
BARBOSA, Marconi Soares. Invariantes diferenciais do grupo simpléctico. 2002. Tese de Doutorado - Universidade de São Paulo (USP). Instituto de Física de São Carlos (IFSC/BT) São Carlos.

Por favor, reporte erros na lista de publicações científicas utilizando este formulário.