Bolsa 22/08588-6 - Produção agropecuária, Pecuária de precisão - BV FAPESP
Busca avançada
Ano de início
Entree

BeefTrader: plataforma de inteligência de informações de mercado para a maximização do lucro de produtores e da indústria frigorífica

Processo: 22/08588-6
Modalidade de apoio:Bolsas no Brasil - Programa Capacitação - Treinamento Técnico
Data de Início da vigência: 01 de agosto de 2022
Data de Término da vigência: 31 de janeiro de 2024
Área de conhecimento:Ciências Agrárias - Zootecnia - Produção Animal
Acordo de Cooperação: SEBRAE-SP
Pesquisador responsável:Murilo Garrett Moura Ferreira dos Santos
Beneficiário:Allberson Bruno de Oliveira Dantas
CNAE: Criação de bovinos
Atividades de apoio à pecuária
Outras atividades de prestação de serviços de informação não especificadas anteriormente
Vinculado ao auxílio:21/12179-1 - BeefTrader: plataforma de inteligência de informações de mercado para a maximização do lucro de produtores e da indústria frigorífica, AP.PIPE
Assunto(s):Produção agropecuária   Pecuária de precisão   Bovinocultura de corte   Monitoramento de fauna   Aprendizagem profunda   Inteligência artificial   Programação matemática
Palavra(s)-Chave do Pesquisador:Bovinocultura de corte | Deep Learning | Inteligência Artificial | Pecuária de Precisão | Programação matemática | Rede neurais | Pecuária de precisão

Resumo

O Brasil é o maior exportador mundial de carne, atendendo 157 países, sendo responsável por 18% do mercado internacional e conta com as maiores redes de frigoríficos e de distribuição do planeta. O movimento do agronegócio da pecuária de corte representa o maior setor de valor bruto da produção agropecuária Brasileira e gerou R$ 747 bilhões em 2020. Já no mundo, este complexo, em 2016 movimentou US$ 315 trilhões. Aumentar a lucratividade de pecuaristas pode gerar impacto sobre 10% do PIB brasileiro. Este projeto visa estimular o aumento de produtividade, melhorar lucratividade e reduzir o custo da @ produzida, descomotizando-a, ajudando países atenderem suas demandas, com retorno para produtores, processadores e consumidores. A proposta é oferecer um conjunto de mecanismos que monitorem os animais desde a recria e o confinamento até o abate, além de permitir o monitoramento do peso, ECC e do frame size (tamanho animal) baseados nas características do indivíduo e formação de grupos de animais mais lucrativos usando visão computacional, algoritmos de Inteligência Artificial (IA) integrados a modelos de tomada de decisão com pesquisa operacional. Esta proposta irá trazer melhor rastreabilidade, transparência, melhor uso dos recursos naturais dirimindo o impacto ambiental e a insegurança alimentar da atividade pecuária, que ainda irá auferir mais lucro dentro e fora da porteira. No desenvolvimento do BeefTrader (processo FAPESP 2015/07855-7) e BeefTrader Grass (Projeto FAPESP 2019/09134-6) no PIPE Fase 1 foram gerados modelos, algoritmos, publicações e resultados de provas de conceito demonstrando sua viabilidade principalmente dentro da fronteira da fazenda. No PIPE Fase 2 o objetivo central da pesquisa será automatizar a coleta de mensuração e avaliação das características dos animais para peso, ECC e frame size, acoplando inteligência de visão computacional, o que aufere a pequena empresa menos dependência tecnológica de sensores de outras empresas, melhor relação custo-benefício do produtor, ajudando assim, a escalada das soluções no mercado melhorando a lucratividade do negócio. As etapas para atingir estes objetivos são: 1) desenvolvimento de um sensor de coleta de mensurações dos animais (hardware e sistema 3DBeef), coleta de variáveis de entradas para o algoritmos de caracterização individual de bovinos de corte; 2) melhorar os algoritmos 3DBeef: plataforma para caracterização individual de bovinos de corte usando visão computacional e machine learning para estimar peso, ECC, frame size que irão culminar em um algoritmo de IA (como inovação integrativa da proposta) para formação de lotes homogêneos de animais mais lucrativos; 3) melhorar o BeefTrader e BeefTrader Grass com a integração de modelos preditivos de crescimento, de deposição de tecidos e lucratividade retro-alimentados pelo sistema 3DBeef. Serão monitorados com o BeefTrader, BeefTrader Grass e 3DBeef até 15.000 animais das fazendas já monitoradas ou com interesse em parceria com a @Tech. Na fazenda os animais serão: identificados, pesados, caracterizados e avaliados automaticamente via BeefTrader, BeefTrader Grass e 3DBeef in vivo. (AU)

Matéria(s) publicada(s) na Agência FAPESP sobre a bolsa:
Mais itensMenos itens
Matéria(s) publicada(s) em Outras Mídias ( ):
Mais itensMenos itens
VEICULO: TITULO (DATA)
VEICULO: TITULO (DATA)