Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Research Impact of acute inflammation on spinal motoneuron synaptic plasticity following ventral root avulsion

Full text
Author(s):
Barbizan, Roberta [1] ; Oliveira, Alexandre L. R. [1]
Total Authors: 2
Affiliation:
[1] Univ Estadual Campinas, Dept Anat Cell Biol Physiol & Biophys, Inst Biol, BR-13083970 Campinas, SP - Brazil
Total Affiliations: 1
Document type: Journal article
Source: JOURNAL OF NEUROINFLAMMATION; v. 7, MAY 4 2010.
Web of Science Citations: 17
Abstract

Background: Ventral root avulsion is a proximal nerve root lesion in which ventral motor nerve rootlets are torn from surface of the spinal cord, resulting in extensive death of motoneurons. It has been previously shown that if such lesioning is performed in an animal with experimental autoimmune encephalomyelitis (EAE), a significant number of motoneurons can be rescued despite an intense inflammatory reaction. This rescue effect has been attributed to production of a number of neurotrophic factors by invading T cells. Synaptological changes may be involved in neuronal degeneration, and a better understanding of the role of these changes may be of importance for developing new strategies to promote neuronal survival. The objective of the present work was to evaluate neuronal survival, astroglial reaction and synaptic input changes in spinal cord anterior horn motor nuclei after ventral root avulsion in animals with EAE, both during peak disease and after remission. Methods: Lewis rats were subjected to unilateral avulsion of lumbar ventral roots (VRA) and divided into three groups: VRA control, VRA at peak of EAE, and VRA during EAE remission. The animals were sacrificed and their lumbar spinal cords processed for immunohistochemistry, transmission electron microscopy, and motoneuron counting. Results: The results indicate a reduction in astroglial reaction, a maintenance of microglial reactivity, and increases in synaptic covering of, and survival of, motoneurons in the VRA+EAE group as compared to VRA alone. Conclusion: The present findings indicate that CNS inflammation may directly influence synaptic plasticity as well as the stability of neuronal networks, positively influencing the survival of lesioned neurons. (AU)

FAPESP's process: 10/06043-5 - Impact of acute inflammation on spinal motoneuron synaptic plasticity following ventral root avulsion
Grantee:Alexandre Leite Rodrigues de Oliveira
Support type: Regular Research Grants - Publications - Scientific article