Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

limate-growth relations of congeneric tree species vary across a tropical vegetation gradient in Brazi

Full text
Author(s):
Aragao, V, Jose Roberto ; Zuidema, Pieter A. [1] ; Groenendijk, Peter [2]
Total Authors: 3
Affiliation:
[1] Wageningen Univ, Forest Ecol & Forest Management Grp, Wageningen - Netherlands
[2] Aragao, Jose Roberto, V, Univ Estadual Campinas, Inst Biol, Dept Plant Biol, UNICAMP, POB 6109, BR-13083970 Campinas, SP - Brazil
Total Affiliations: 2
Document type: Journal article
Source: DENDROCHRONOLOGIA; v. 71, FEB 2022.
Web of Science Citations: 0
Abstract

Seasonally dry tropical forests are an important global climatic regulator, a main driver of the global carbon sink dynamics and are predicted to suffer future reductions in their productivity due to climate change. Yet, little is known about how interannual climate variability affects tree growth and how climate-growth responses vary across rainfall gradients in these forests. Here we evaluate changes in climate sensitivity of tree growth along an environmental gradient of seasonally dry tropical vegetation types (evergreen forest - savannah - dry forest) in Northeastern Brazil, using congeneric species of two common neotropical genera: Aspidosperma and Handroanthus. We built tree-ring width chronologies for each species x forest type combinations and explored how growth variability correlated with local (precipitation, temperature) and global (the El Nino Southern Oscillation-ENSO) climatic factors. We also assessed how growth sensitivity to climate and the presence of growth deviations varied along the gradient. Precipitation stimulates tree growth and was the main growth-influencing factor across vegetation types. Trees in the dry forest site showed highest growth sensitivity to interannual variation in precipitation. Temperature and ENSO phenomena correlated negatively with growth and sensitivity to both climatic factors were similar across sites. Negative growth deviations were present and found mostly in the dry-forest species. Our results reveal a dominant effect of precipitation on tree growth in seasonally dry tropical forests and suggest that along the gradient, dry forests are the most sensitivity to drought. These forests may therefore be the most vulnerable to the deleterious effects of future climatic changes. These results highlight the importance of understanding the climatic sensitivity of different tropical forests. This understanding is key to predict the carbon dynamics in tropical regions, and sensitivity differences should be considered when prioritizing conservation measures of seasonally dry topical forests. (AU)

FAPESP's process: 18/01847-0 - DendroGrad: Tree-rings, wood anatomy and hydraulic traits do evaluate long-term CO2-fertilisation effects across environmental gradients on three tropical tree species
Grantee:Peter Stoltenborg Groenendyk
Support Opportunities: Research Grants - Young Investigators Grants
FAPESP's process: 18/24514-7 - Evaluation of tree growth in a gradient Atlantic Forest - Cerrado - Caatinga and its relations with climate change
Grantee:José Roberto Vieira Aragão
Support Opportunities: Scholarships in Brazil - Doctorate