Advanced search
Start date
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Fish oil attenuated dystrophic muscle markers of inflammation via FFA1 and FFA4 in the mdx mouse model of DMD

Full text
Maciel Junior, Marcos [1] ; Camacari de Carvalho, Samara [1] ; Saenz Suarez, Paula Andrea [1] ; Santo Neto, Humberto [1] ; Marques, Maria Julia [1]
Total Authors: 5
[1] Univ Campinas Unicamp, Dept Struct & Funct Biol, Inst Biol, BR-13083865 Campinas, SP - Brazil
Total Affiliations: 1
Document type: Journal article
Source: Anatomical Record-Advances in Integrative Anatomy and Evolutionary Biology; v. 304, n. 6, SI NOV 2020.
Web of Science Citations: 0

In the present study we investigated the involvement of free fatty acid (FFA) receptors in the anti-inflammatory role of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in dystrophic muscles, by administering FFA blockers in the mdx mouse model of dystrophy. Mdx mice (3 months-old) were treated with fish oil capsules (FDC Vitamins; 0.4 g EPA and 0.2 g DHA; gavage) alone or concomitant to FFA1 and FFA4 blockers (GW1100 and AH7614; i.p.). C57BL/10 mice (3 months-old) and untreated-mdx mice received mineral oil and were used as controls. After 1 month of treatment, plasma markers of myonecrosis (total and cardiac creatine kinase; CK), the levels of FFA1 and FFA4 and of the markers of inflammation, nuclear transcription factor kappa B (NFkB), tumor necrosis factor alpha (TNF-alpha) and interleukin 1 beta (IL-1 beta) were analyzed in the diaphragm muscle and heart by western blot. Fish oil significantly reduced total CK, cardiac CK and the levels of NFkB (diaphragm), and of TNF-alpha and IL-1 beta (diaphragm and heart) in mdx. In the dystrophic diaphragm, FFA1 was increased compared to normal. Blockers of FFA1 and FFA4 significantly inhibited the effects of fish oil treatment in both dystrophic muscles. The anti-inflammatory effects of fish oil in dystrophic diaphragm muscle and heart were mediated through FFA1 and FFA4. (AU)

FAPESP's process: 17/24051-4 - G-protein coupled receptors and autophagy: potential targets of omega-3 and deflazacort in DMD therapy
Grantee:Maria Julia Marques
Support Opportunities: Regular Research Grants