Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

A Novel Modelling Methodology Which Predicts the Structural Behaviour of Vertebral Bodies under Axial Impact Loading: A Finite Element and DIC Study

Full text
Author(s):
Agostinho Hernandez, Bruno [1] ; Gill, Harinderjit Singh [1] ; Gheduzzi, Sabina [1]
Total Authors: 3
Affiliation:
[1] Univ Bath, Dept Mech Engn, Bath BA2 7AY, Avon - England
Total Affiliations: 1
Document type: Journal article
Source: MATERIALS; v. 13, n. 19 OCT 2020.
Web of Science Citations: 1
Abstract

Cervical spine injuries (CSIs) arising from collisions are uncommon in contact sports, such as rugby union, but their consequences can be devastating. Several FE modelling approaches are available in the literature, but a fully calibrated and validated FE modelling framework for cervical spines under compressive dynamic-impact loading is still lacking and material properties are not adequately calibrated for such events. This study aimed to develop and validate a methodology for specimen-specific FE modelling of vertebral bodies under impact loading. Thirty-five (n = 35) individual vertebral bodies (VBs) were dissected from porcine spine segments, potted in bone cement and mu CT scanned. A speckle pattern was applied to the anterior faces of the bones to allow digital image correlation (DIC), which monitored the surface displacements. Twenty-seven (n = 27) VBs were quasi-statically compressively tested to a load up to 10 kN from the cranial side. Specimen-specific FE models were developed for fourteen (n = 14) of the samples in this group. The material properties were optimised based on the experimental load-displacement data using a specimen-specific factor (k(GSstatic)) to calibrate a density to Young's modulus relationship. The average calibration factor arising from this group was calculated ((K) over bar (GSstatic)) and applied to a control group of thirteen (n = 13) samples. The resulting VB stiffnesses was compared to experimental findings. The final eight (n = 8) VBs were subjected to an impact load applied via a falling mass of 7.4 kg at a velocity of 3.1 m s(-1). Surface displacements and strains were acquired from the anterior VB surface via DIC, and the impact load was monitored with two load cells. Specimen-specific FE models were created for this dynamic group and material properties were assigned again based on the density-Young's modulus relationship previously validated for static experiments, supplemented with an additional factor (K-GSdynamic). The optimised conversion factor for quasi-static loading, (K) over bar (GSstatic), had an average of 0.033. Using this factor, the validation models presented an average numerical stiffness value 3.72% greater than the experimental one. From the dynamic loading experiments, the value for K-GSdynamic was found to be 0.14, 4.2 times greater than (K) over bar (GSstatic). The average numerical stiffness was 2.3% greater than in the experiments. Almost all models presented similar stiffness variations and regions of maximum displacement to those observed via DIC. The developed FE modelling methodology allowed the creation of models which predicted both static and dynamic behaviour of VBs. Deformation patterns on the VB surfaces were acquired from the FE models and compared to DIC data, achieving high agreement. This methodology is now validated to be fully applied to create whole cervical spine models to simulate axial impact scenarios replicating rugby collision events. (AU)

FAPESP's process: 14/26366-4 - Tridimensional finite element modeling, validation and analysis of stresses and strains due to impact loads in human spine
Grantee:Bruno Agostinho Hernandez
Support Opportunities: Scholarships in Brazil - Doctorate