Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Analysis of a model for the formation of fold-type oscillation marks in the continuous casting of steel

Full text
Author(s):
Devine, K. M. [1] ; Vynnycky, M. [1, 2] ; Mitchell, S. L. [1] ; O'Brien, S. B. G. [1]
Total Authors: 4
Affiliation:
[1] Univ Limerick, Dept Math & Stat, Math Applicat Consortium Sci & Ind MACSI, Limerick V94 T9PX - Ireland
[2] KTH Royal Inst Technol, Dept Mat Sci & Technol, Div Proc, Brinellvagen 23, S-10044 Stockholm - Sweden
Total Affiliations: 2
Document type: Journal article
Source: IMA JOURNAL OF APPLIED MATHEMATICS; v. 85, n. 3, p. 385-420, JUN 2020.
Web of Science Citations: 0
Abstract

This paper investigates the different possible behaviours of a recent asymptotic model for oscillation-mark formation in the continuous casting of steel, with particular focus on how the results obtained vary when the heat transfer coefficient (R-mf), the thermal resistance (mu(f)) and the dependence of the viscosity of the flux powder as a function of temperature, are changed. It turns out that three different outcomes are possible: (I) the flux remains in molten state and no solid flux ever forms; (II) both molten and solid flux are present, and the profile of the oscillation mark is continuous with respect to the space variable in the casting direction; (III) both molten and solid flux are present, and the profile of the oscillation mark is discontinuous with respect to the space variable in the casting direction. Although (I) gave good agreement with experimental data, it suffered the drawback that solid flux is typically observed during actual continuous casting; this has been rectified in this work via alternative (II). On the other hand, alternative (III) can occur as a result of hysteresis-type phenomenon that is encountered in other flows that involve temperature-dependent viscosity; in the present case, this manifests itself via the possibility of multiple states for the oscillation-mark profile at the instants in time when solid flux begins to form and when it ceases to form. (AU)

FAPESP's process: 18/07643-8 - Industrial mathematics and practical asymptotics
Grantee:José Alberto Cuminato
Support type: Research Grants - Visiting Researcher Grant - International