Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Bayesian analysis and prediction of hybrid performance

Full text
Author(s):
Alves, Filipe Couto [1] ; Correa Granato, Aitalo Stefanine [2] ; Galli, Giovanni [2] ; Lyra, Danilo Hottis [3] ; Fritsche-Neto, Roberto [2] ; de los Campos, Gustavo [4, 5, 6, 7]
Total Authors: 6
Affiliation:
[1] Michigan State Univ, Dept Epidemiol & Biostat, 775 Woodlot Dr Off 1315, E Lansing, MI 48824 - USA
[2] Univ Sao Paulo, Dept Genet, Luiz de Queiroz Coll Agr, Ave Padua Dias 11, Sao Paulo - Brazil
[3] Rothamsted Res, Dept Computat & Analyt Sci, Harpenden, Herts - England
[4] Michigan State Univ, Dept Epidemiol & Biostat, 775 Woodlot Dr Off 1311, E Lansing, MI 48824 - USA
[5] Michigan State Univ, Dept Stat, 775 Woodlot Dr Off 1311, E Lansing, MI 48824 - USA
[6] Michigan State Univ, Dept Probabil, 775 Woodlot Dr Off 1311, E Lansing, MI 48824 - USA
[7] Michigan State Univ, Inst Quantitat Hlth Sci & Engn, 775 Woodlot Dr Off 1311, E Lansing, MI 48824 - USA
Total Affiliations: 7
Document type: Journal article
Source: PLANT METHODS; v. 15, FEB 6 2019.
Web of Science Citations: 2
Abstract

The selection of hybrids is an essential step in maize breeding. However, evaluating a large number of hybrids in field trials can be extremely costly. However, genomic models can be used to predict the expected performance of un-tested genotypes. Bayesian models offer a very flexible framework for hybrid prediction. The Bayesian methodology can be used with parametric and semi-parametric assumptions for additive and non-additive effects. Furthermore, samples from the posterior distribution of Bayesian models can be used to estimate the variance due to general and specific combining abilities even in cases where additive and non-additive effects are not mutually orthogonal. Also, the use of Bayesian models for analysis and prediction of hybrid performance has remained fairly limited. We provided an overview of Bayesian parametric and semi-parametric genomic models for prediction of agronomic traits in maize hybrids and discussed how these models can be used to decompose the genotypic variance into components due to general and specific combining ability. We applied the methodology to data from 906 single cross tropical maize hybrids derived from a convergent population. Our results show that: (1) non-additive effects make a sizable contribution to the genetic variance of grain yield; however, the relative importance of non-additive effects was much smaller for ear and plant height; (2) genomic prediction can achieve relatively high accuracy in predicting phenotypes of un-tested hybrids and in pre-screening. Genomic prediction can be a useful tool in pre-screening of hybrids and could contribute to the improvement of the efficiency and efficacy of maize hybrids breeding programs. The Bayesian framework offers a great deal of flexibility in modeling hybrid performance. The methodology can be used to estimate important genetic parameters and render predictions of the expected hybrid performance as well measures of uncertainty about such predictions. (AU)

FAPESP's process: 13/24135-2 - Genome-Wide Association Studies for nitrogen use efficiency and its components in tropical maize lines
Grantee:Roberto Fritsche Neto
Support type: Regular Research Grants