Advanced search
Start date
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

MiRNAs differentially expressed in skeletal muscle of animals with divergent estimated breeding values for beef tenderness

Full text
Kappeler, Berna I. G. [1] ; Regitano, Luciana C. A. [2] ; Poleti, Mirele D. [3] ; Cesar, Aline S. M. [1] ; Moreira, Gabriel C. M. [1] ; Gasparin, Gustavo [1] ; Coutinho, Luiz L. [1]
Total Authors: 7
[1] Univ Sao Paulo, Luiz De Queiroz Coll Agr, Dept Anim Sci, BR-13418900 Piracicaba, SP - Brazil
[2] Embrapa Pecuaria Sudeste, BR-13560970 Sao Carlos, SP - Brazil
[3] Univ Sao Paulo, Fac Anim Sci & Food Engn, Dept Vet Med, BR-13635900 Pirassununga, SP - Brazil
Total Affiliations: 3
Document type: Journal article
Source: BMC MOLECULAR BIOLOGY; v. 20, JAN 3 2019.
Web of Science Citations: 2

BackgroundMicroRNAs (miRNAs) are small noncoding RNAs of approximately 22 nucleotides, highly conserved among species, which modulate gene expression by cleaving messenger RNA target or inhibiting translation. MiRNAs are involved in the regulation of many processes including cell proliferation, differentiation, neurogenesis, angiogenesis, and apoptosis. Beef tenderness is an organoleptic characteristic of great influence in the acceptance of meat by consumers. Previous studies have shown that collagen level, marbling, apoptosis and proteolysis are among the many factors that affect beef tenderness. Considering that miRNAs can modulate gene expression, this study was designed to identify differentially expressed miRNAs that could be modulating biological processes involved with beef tenderness.ResultsDeep sequence analysis of miRNA libraries from longissimus thoracis muscle allowed the identification of 42 novel and 308 known miRNAs. Among the known miRNAs, seven were specifically expressed in skeletal muscle. Differential expression analysis between animals with high (H) and low (L) estimated breeding values for shear force (EBVSF) revealed bta-mir-182 and bta-mir-183 are up-regulated (q value<0.05) in animals with L EBVSF, and bta-mir-338 is up-regulated in animals with H EBVSF. The number of bovine predicted targets for bta-mir-182, bta-mir-183 and bta-mir-338 were 811, 281 and 222, respectively, which correspond to 1204 unique target genes. Among these, four of them, MEF2C, MAP3K2, MTDH and TNRC6B were common targets of the three differentially expressed miRNAs. The functional analysis identified important pathways related to tenderness such as apoptosis and the calpain-calpastatin system.ConclusionThe results obtained indicate the importance of miRNAs in the regulatory mechanisms that influence muscle proteolysis and meat tenderness and contribute to our better understanding of the role of miRNAs in biological processes associated with beef tenderness. (AU)

FAPESP's process: 12/23638-8 - Molecular basis of meat quality in Nelore beef cattle
Grantee:Luciana Correia de Almeida Regitano
Support Opportunities: Research Projects - Thematic Grants
FAPESP's process: 13/21017-9 - Study of proteins associated with meat quality phenotypes in Nelore cattle
Grantee:Mirele Daiana Poleti
Support Opportunities: Scholarships in Brazil - Post-Doctorate
FAPESP's process: 14/00943-5 - Identification of microRNAs involved in meat tenderness in Nellore cattle
Grantee:Berna Ines Gimenez Kappeler
Support Opportunities: Scholarships in Brazil - Master
FAPESP's process: 14/11871-5 - Identification of eQTLs associated with the deposition and composition of intramuscular fat in Nellore breed
Grantee:Aline Silva Mello Cesar
Support Opportunities: Scholarships in Brazil - Post-Doctorate