Advanced search
Start date
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Structural insights into beta-glucosidase transglycosylation based on biochemical, structural and computational analysis of two GH1 enzymes from Trichoderma harzianum

Full text
Florindo, Renata N. [1] ; Souza, Valquiria P. [2] ; Mutti, Hemily S. [1] ; Camilo, Cesar [1] ; Manzine, Livia Regina [1] ; Marana, Sandro R. [2] ; Polikarpov, Igor [1] ; Nascimento, Alessandro S. [1]
Total Authors: 8
[1] Univ Sao Paulo, Inst Fis Sao Carlos, Ave Trabalhador Saocarlense 400, BR-13566590 Sao Carlos, SP - Brazil
[2] Univ Sao Paulo, Inst Quim, Dept Bioquim, Sao Paulo, SP - Brazil
Total Affiliations: 2
Document type: Journal article
Source: NEW BIOTECHNOLOGY; v. 40, n. B, p. 218-227, JAN 25 2017.
Web of Science Citations: 9

beta-glucosidases are glycoside hydrolases able to cleave small and soluble substrates, thus producing monosaccharides. These enzymes are distributed among families GH1, GH2, GH3, GH5, GH9, GH30 and GH116, with GH1 and GH3 being the most relevant families with characterized enzymes to date. A recent transcriptomic analysis of the fungus Trichoderma harzianum, known for its increased beta-glucosidase activity as compared to Trichoderma reesei, revealed two enzymes from family GH1 with high expression levels. Here we report the cloning, recombinant expression, purification and crystallization of these enzymes, ThBgl1 and ThBgl2. A close inspection of the enzymatic activity of these enzymes surprisingly revealed a marked difference between them despite the sequence similarity (53%). ThBgl1 has an increased tendency to catalyze transglycosylation reaction while ThBgl2 acts more as a hydrolyzing enzyme. Detailed comparison of their crystal structures and the analysis of the molecular dynamics simulations reveal the presence of an asparagine residue N186 in ThBgl2, which is replaced by the phenylalanine F180 in ThBgl1. This single amino acid substitution seems to be sufficient to create a polar environment that culminates with an increased availability of water molecules in ThBgl2 as compared to ThBgl1, thus conferring stronger hydrolyzing character to the former enzyme. (AU)

FAPESP's process: 14/19439-5 - Structural networks and functional properties in enzymes
Grantee:Sandro Roberto Marana
Support Opportunities: Regular Research Grants
FAPESP's process: 08/56255-9 - Structure and function of enzymes and auxiliary proteins from Trichoderma, active in cell-wall hydrolysis
Grantee:Igor Polikarpov
Support Opportunities: Program for Research on Bioenergy (BIOEN) - Thematic Grants
FAPESP's process: 14/06565-2 - Extending the frontiers in biomolecular interactions: docking and free energy assessment
Grantee:Alessandro Silva Nascimento
Support Opportunities: Regular Research Grants