Advanced search
Start date
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Bio-prototyping of europium-yttria based rods for radiation dosimetry

Full text
Santos, S. C. ; Rodrigues, Jr., O. ; Campos, L. L.
Total Authors: 3
Document type: Journal article
Source: Materials Chemistry and Physics; v. 199, p. 557-566, SEP 15 2017.
Web of Science Citations: 3

The application of solid state dosimeters in radiation protection has grown significantly as consequence of advances in the development of dosimetric materials using rare earths. The conception of new dosimetric materials concerns synthesis methods, which control the evolution of material structure, including further processing steps as, shaping, drying, and sintering. The present study reports a full bio-prototyping approach to produce europium doped yttria rods with potential application in radiation dosimetry. Ceramic particles synthesized by hydrothermal route were characterized by Photon Correlation Spectroscopy (PCS), X-ray diffraction (XRD), and Scanning Electron Microscopy (SEM). The effect of europium on promoting electronic defects in yttria host was evaluated by Electron Paramagnetic Resonance (EPR). Low pressure hydrothermal synthesis led to formation of rounded particles with mean diameter of 410 nm. Aqueous suspensions with 20 vol% of particles prepared at pH 10, and 0.2 wt% binder exhibited apparent viscosity of 213 mPa s, being suitable for bio-prototyping of rods. Sintering of shaped samples at 1600 degrees C for 4 h provided formation of dense ceramic rods. Europium-yttria rods containing 5 at.% Eu exhibited the most intense EPR response. (C) 2017 Elsevier B.V. All rights reserved. (AU)

FAPESP's process: 14/23621-3 - Development of ceramic materials based on rare earth doped yttria for application in radiation dosimetry
Grantee:Silas Cardoso dos Santos
Support type: Scholarships in Brazil - Post-Doctorate