Advanced search
Start date
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Multi-trait genomic prediction for nitrogen response indices in tropical maize hybrids

Full text
Lyra, Danilo Hottis ; Mendonca, Leandro de Freitas ; Galli, Giovanni ; Alves, Filipe Couto ; Correia Granato, Italo Stefanine ; Fritsche-Neto, Roberto
Total Authors: 6
Document type: Journal article
Source: MOLECULAR BREEDING; v. 37, n. 6 JUN 2017.
Web of Science Citations: 11

In maize breeding, genomic prediction may be an efficient tool for selecting single-crosses evaluated under abiotic stress conditions. In addition, a promising strategy is applying multiple-trait genomic prediction using selection indices (SIs), increasing genetics gains and reducing time per cycles. In this study, we aimed (i) to compare accuracy of single-and multi-trait genomic prediction (STGP; MTGP) in two maize datasets, (ii) to evaluate prediction of four selection indices that could contribute to the selection of tropical maize hybrids under contrasting nitrogen conditions, and (iii) to compare the use of linear (GBLUP) and nonlinear (RKHS/GK) kernels in STGP and MTGP analyses. For either single-trait GBLUP and RKHS analyses, the highest values obtained for accuracy were 0.40 and 0.41 using harmonic mean (HM), respectively. From multi-trait GBLUP and GK, using the combination of selection indices in MTGP seems to be suitable, increasing the accuracy. Adding grain yield and plant height in MTGP showed a slight improvement in accuracy compared to STGP. In general, there was a modest benefit of using single-trait RKHS and GK multi-trait, rather than GBLUP. (AU)

FAPESP's process: 14/26326-2 - Accuracy of non-additive models of genomic selection for nitrogen use efficiency in tropical maize hybrids
Grantee:Danilo Hottis Lyra
Support type: Scholarships in Brazil - Doctorate
FAPESP's process: 13/24135-2 - Genome-Wide Association Studies for nitrogen use efficiency and its components in tropical maize lines
Grantee:Roberto Fritsche Neto
Support type: Regular Research Grants
FAPESP's process: 15/14376-8 - Accuracy of non-additive models and population structure of genomic selection in maize
Grantee:Danilo Hottis Lyra
Support type: Scholarships abroad - Research Internship - Doctorate