Orbital mobility caused by close encounters with more than one massive asteroid
Capture, permanence and escape of resonances in the Solar System
Constraints on the terminal ejection velocity fields of asteroid families
Full text | |
Author(s): |
Total Authors: 5
|
Affiliation: | [1] Southwest Res Inst, Dept Space Studies, Boulder, CO 80302 - USA
[2] UNESP Univ Estadual Paulista, Grupo Dinam Orbital & Planetol, BR-12516410 Guaratingueta, SP - Brazil
[3] UNESP Univ Estadual Paulista, BR-13874149 Sao Joao Da Boa Vista, SP - Brazil
Total Affiliations: 3
|
Document type: | Journal article |
Source: | Monthly Notices of the Royal Astronomical Society; v. 458, n. 4, p. 3731-3738, JUN 1 2016. |
Web of Science Citations: | 11 |
Abstract | |
Asteroid families are groups of minor bodies produced by high-velocity collisions. After the initial dispersions of the parent bodies fragments, their orbits evolve because of several gravitational and non-gravitational effects, such as diffusion in mean-motion resonances, Yarkovsky and Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effects, close encounters of collisions, etc. The subsequent dynamical evolution of asteroid family members may cause some of the original fragments to travel beyond the conventional limits of the asteroid family. Eventually, the whole family will dynamically disperse and no longer be recognizable. A natural question that may arise concerns the time-scales for dispersion of large families. In particular, what is the oldest still recognizable family in the main belt? Are there any families that may date from the late stages of the late heavy bombardment and that could provide clues on our understanding of the primitive Solar system? In this work, we investigate the dynamical stability of seven of the allegedly oldest families in the asteroid main belt. Our results show that none of the seven studied families has a nominally mean estimated age older than 2.7 Gyr, assuming standard values for the parameters describing the strength of the Yarkovsky force. Most `paleo-families' that formed between 2.7 and 3.8 Gyr would be characterized by a very shallowsize-frequency distribution, and could be recognizable only if located in a dynamically less active region (such as that of the Koronis family). V-type asteroids in the central main belt could be compatible with a formation from a paleo-Eunomia family. (AU) | |
FAPESP's process: | 14/24071-7 - Dynamical evolution of asteroid families |
Grantee: | Valerio Carruba |
Support Opportunities: | Scholarships abroad - Research |
FAPESP's process: | 14/06762-2 - Secular families |
Grantee: | Valerio Carruba |
Support Opportunities: | Regular Research Grants |