Advanced search
Start date

Derivation of critical values of potentially toxics elements in soils and environmental risk assessment and human health

Full text
Alexys Giorgia Friol Boim
Total Authors: 1
Document type: Master's Dissertation
Press: Piracicaba.
Institution: Universidade de São Paulo (USP). Escola Superior de Agricultura Luiz de Queiroz (ESALA/BC)
Defense date:
Examining board members:
Luis Reynaldo Ferracciú Alleoni; Leônidas Carrijo Azevedo Melo; Fábio Netto Moreno
Advisor: Luis Reynaldo Ferracciú Alleoni

The intensive land use and uncontrolled disposal of toxic substances in the soil due to the increase of agricultural and industrial activities can promote the accumulation of potentially toxic elements (PTEs) mainly in the upper soil layers, which favors the uptake by plants and can pose unacceptable risks to humans health, mainly by intake of contaminated food. In Brazil, there are few studies regarding the accumulation and the species in which these elements are present in the soil solution and can be absorbed by several vegetable crops eaten raw by the population, i.e., there is an indirect exposure by ingestion of vegetables. The Bioconcentration Factor (BCF) is the ratio of the total concentration of PTE in plant and soil. BCF is used to estimate the metal accumulation in plants. This study was carried out taking the following objectives into account: (i) the comparison of results obtained in bibliographic references from humid tropics and temperate regions; (ii) to calculate the critical concentrations of Cu, Ni, Pb and Zn for both urban and rural scenarios of exposure, using both mathematical models for assessment risk to human health: CETESB and CSOIL spreadsheets; (iii) to evaluate the reactive, available and bioaccessible fractions of Ba, Cr, Cu, Ni, Pb and Zn in soils cultivated with vegetable crops in Sao Paulo states, Brazil; and (iv) to estimate the PTEs contents in the fractions by empiric functions from pseudototals concentrations and soil physical and chemical properties. The following fractions of vegetables consumed in contaminated areas have taken into account: 10% for the urban scenario and 25% for the rural scenario. The BCF was the main parameter evaluated in the calculation of the critical concentration of EPTs. For calculating the critical concentrations based on risk to human health, it is suggested that the BCF should be determined for each state/region, mainly considering the physical and chemical soil properties, and the type and species of plants. The empirical models were able to predict the relationship between the reactive and the pseudototal fractions of the PTEs, and this fraction depended on the soil properties and on their pseudototal contents. In the available fraction, 3% and 1 % of Ba and Zn contents, respectively, were available in the soil solution in relation to pseudototal levels, suggesting the poor potential for the mobility of these elements in the soil. Moreover, Ba (bioaccessible fraction) had great solubility in acidic environments, such as the low pH found in the stomach. (AU)

FAPESP's process: 12/10591-3 - Derivation of critical limits of Cr, Cu, Ni, Pb and Zn in soils
Grantee:Alexys Giorgia Friol Boim
Support Opportunities: Scholarships in Brazil - Master