Advanced search
Start date
Betweenand


Development of liquid-crystaline nanodispersions for topical delivery of the association of nitrosyl ruthenium complex and protoporphyrin IX in photodynamic therapy of skin cancer

Full text
Author(s):
Aline Regina Hellmann Carollo
Total Authors: 1
Document type: Doctoral Thesis
Press: Ribeirão Preto.
Institution: Universidade de São Paulo (USP). Faculdade de Ciências Farmacêuticas de Ribeirão Preto (PCARP/BC)
Defense date:
Examining board members:
Maria Vitoria Lopes Badra Bentley; Armando da Silva Cunha Junior; Norberto Peporine Lopes; Antonio Claudio Tedesco
Advisor: Maria Vitoria Lopes Badra Bentley
Abstract

Nitric oxide (NO) is a versatile biological agent, acting in several parts of the body such as brain, arteries, immune system, liver and lungs. Its radical nature gives great versatility and reactivity, making the understanding of its biochemical a challenge. The NO molecule tends to react quickly with some transition metals, forming stable compounds called nitrosyl complexes, which can be used as a source of nitric oxide. NO release from nitrosyl complexes can occur by chemical, electrochemical or photochemical reduction. In this work, the acquisition, characterization and permeation of a nitrosyl ruthenium complex, trans-[RuC(cyclam)(NO)]C2 (cyclam-NO), which associated with the photosensitizer protoporphyrin IX, has the peculiarity of absorbing in the visible region, and could then be applied in photodynamic therapy (PDT) for treatment of skin cancer, were studied. The mixture of compounds was incorporated into liquid crystal nanodispersions, cubic (DFC) and hexagonal (DFH) phases, and its penetration/permeation in vitro in an animal model skin was evaluated, as well as the photochemical behavior of the system, with regard to NO release, seeking a future application in PDT. The cytotoxic activity of the compounds alone and in combination was evaluated against the B16F10 and Melan-A cell lines, in the absence and in the presence of light. Binary and ternary phase diagrams were constructed, and from these, the formulations to be studied were chosen. These formulations were characterized by polarized light microscopy and X-ray diffraction and were evaluated for particle size and polydispersity index of nanodispersions obtained and their stability by turbidimetry. Also, the release of singlet oxygen and NO from the compounds in solution and incorporated in the formulations was discussed. An analytical method using high efficiency liquid chromatography was developed and validated for simultaneous quantification of compounds in the experiments. The release of compounds from formulations using cellulose acetate membrane was evaluated, and only the cyclam-NO could be detect. The study of the encapsulation efficiency showed that about 70% of the added amount of the compounds was incorporated in the DFC and approximately 80% in DFH. In vitro permeation and retention experiments of the compounds in pig ear skin were performed, showing a significant increase in the concentration of the compounds in the skin layers, compared to controls containing compounds in polyethylene glycol. The DFH promoted an increase in the concentration of PpIX in the stratum corneum (EC) of 2.6 times and in the epidermis + dermis without EC ([E + D]) of 3.4 times, and the cyclam-NO by 2.7 times for EC and 2.4 times in the [E + D]. DFC already increased by 1.6 times the amount of PpIX in EC and 1.9 times at the [E+D] and 4.6 times the amount of cyclam-NO in EC and 2.0 times in the [E + D]. The results may suggest that these systems are suitable for use as potential carriers for the association of cyclam-NO and PpIX for use in skin cancer PDT and that this association showed a synergistic effect, being more efficient than the use of only one of the compounds. (AU)

FAPESP's process: 07/03460-1 - Development of liquid-crystaline nanodispersions for topical delivery of the association of nitrosyl ruthenium complex and protoporphyrin IX in photodynamic therapy of skin cancer
Grantee:Aline Regina Hellmann Carollo
Support Opportunities: Scholarships in Brazil - Doctorate