Advanced search
Start date
Betweenand


Photoprotective effect evaluation phenolic compounds on skin cell cultures irradiated with UVA and UVB

Full text
Author(s):
Andrea Costa Fruet
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Conjunto das Químicas (IQ e FCF) (CQ/DBDCQ)
Defense date:
Examining board members:
Silvia Berlanga de Moraes Barros; André Rolim Baby; Monica Beatriz Mathor; Carlos Frederico Martins Menck; Vanessa de Moura Sá Rocha
Advisor: Silvia Berlanga de Moraes Barros; Silvya Stuchi Maria Engler
Abstract

Excessive exposure to Ultraviolet radiation (UV) results in clinical manifestations in human skin such as burns, photo-aging and cancer. UVA radiation preferentially induces formation of reactive oxygen species, while UVB radiation is absorbed directly by the DNA. Although endogenous mechanisms are able to prevent/repair cellular damages caused by UV radiation, excess cellular damage retains cells repair capacity and also results on diverse harmful effects on skin, such as, changes in the dermal matrix, inflammatory response and dehydration of the stratum corneum. The use of phenolic compounds with antioxidant activity may help preventing pathological conditions caused by UV radiation. This work aimed to study the photoprotective activity of three phenolic compounds, caffeic (CA), chlorogenic (CGA) and rosmarinic acid (RA) in human skin cells (HaCaT - immortalized human keratinocytes and HDSF - human dermal skin fibroblast) exposed to UVA and UVB radiation. Initially, HDSF and HaCaT cells were exposed to increasing doses of UVA and UVB radiation. After 24 hours of exposure, we evaluated cell viability, cell death, inflammatory mediators, aquaporin and DNA damage. Exposure to UVA and UVB radiation in HaCaT cells results on apoptotic cell death, with an increase of caspases 3 and 9, p53 and reduction of PARP. HaCaT cells when exposed to UVA radiation resulted on increased levels of IL-6, TNF-α and COX-2, internalization of the membrane AQP3, reduction of MMP-2 and MMP-9 release, increase of MMP-1 and ROS production. After UVB radiation, HaCaT cells resulted on an increase of IL-6 and COX-2 production, it also promoted internalization of membrane AQP3 and reduced release of MMP-2 and 9. HDSF were less sensitive to both radiations. Moreover, HDSF resulted in cell viability decrease and cell cycle arrest only after UVA radiation. Furthermore, HDSF when exposed to UVA radiation resulted on an increase of IL-6 production and in DNA damage (8-oxo-dG). Among the studied compounds, CGA presented better photochemiprotective activity towards UVA and UVB radiation. Also, this compound was able to reverse cell death in HaCaT after exposure to both radiations and inhibited cell cycle arrest in HDSF after UVA radiation exposure. HaCaT cells treated with CGA and exposed to UVA radiation resulted on an increase in AQP3 and PARP expression, increased in AQP3 gene expression, reduction in CDKN1A gene expression and reduction in MMP-1, 2 and 9 release. After UVB radiation, GCA treatment increases AQP3 gene expression, reduces CDKN1A gene expression, reduces COX-2 production and increase MMP-2 and 9 releases. The AR treatment showed photochemiprotective activity towards the effects of UVA radiation, with HaCaT responding with an increase on cells viability, increased in PARP and AQP3 expression and in AQP3 gene expression, decreased MMP-1 and 9 releases and reduced COX-2c production. HDSF when treated with AR showed an increase in G1 phase population, in p21 expression and reduced DNA damage-type 8-oxo-dG. HaCaT cells treated with AC reversed cell death, increased p53 expression and increased MMP-2 and 9 releases after UVB radiation and reduced ROS production, p21 expression and MMP -1, 2, 9 release after UVA radiation. HDSF treated with AC was only able to reduce the formation of 8-oxodG DNA damage. These results indicated that the proposed model was able to discriminate the photochemiprotective activity of the studied compounds against the UVA and UVB radiation. In addition, it was demonstrated that the each studied antioxidant have different photoprotective mode of action. (AU)

FAPESP's process: 10/17358-7 - Evaluation of the photoprotective effect of phenolic compounds on skin cells cultures irradiated by UVA and UVB.
Grantee:Andréa Costa Fruet
Support type: Scholarships in Brazil - Doctorate