Advanced search
Start date

Production and microestrutural caracterization of solid lipids systems micro and nanoparticulate used for beta-carotene encapsulation

Full text
Graziela Veiga de Lara Gomes
Total Authors: 1
Document type: Master's Dissertation
Press: Pirassununga.
Institution: Universidade de São Paulo (USP). Faculdade de Zootecnica e Engenharia de Alimentos (FZE/BT)
Defense date:
Examining board members:
Samantha Cristina de Pinho; Carmen Silvia Fávaro Trindade; Maria Helena Andrade Santana
Advisor: Samantha Cristina de Pinho

The benefits from the consumption of bioactive compounds, like carotenoids, have been widely demonstrated for scientific literature. However, some of this compounds (like carotenes), due totheir hydrophobicity, are difficult to be incorporated in aqueous food formulations, and, depending on the food matrices where they are introduced, are hardly absorbed in the gastrointestinal tract - in order words, they present limited bioavailability. These problems can be overcome by micro and nanoencapsulation. In this context, the objective of this study was to investigate the temporal stability of beta-carotene encapsulated in solid lipid micro and nano particles produced with a mixture of stearic acid or tristearin and sunflower oil, monitoring the microstructure of the systems by X-ray diffractometry, differential scanning calorimetry, zeta potential and particle size measurements, and try to link the preservation of beta-carotene with microstructural considerations. The surfactant used for the stearic acid microparticulate systems was polysorbate 80 and formulations with 4 and 6% of total lipid were produced, in the absence and presence of alpha-tocopherol, and all systems showed high stability in terms of average particle diameter and size distribution, but only the particles containing alpha-tocopherol preserved the content of beta-carotene during the storage period of 7 months In the case of the tristearin microparticles the presence of a hydrocolloid (xanthan gum) was essential for avoid flocculation and improves the system stability, and formulations containing mixtures of surfactants (soybean phosphatidylcholine and polysorbate 60 and phosphatidylcholine and polysorbate 20) were tested. Among such systems, only the solidmicroparticles stabilized with phosphatidylcholine and polysorbate 60 showed stability in terms of average particle diameter and size distribution, and the system with less concentration of solid lipid did not show significant destabilization until the 4th month of storage. As for the nanoparticulated systems, formulations with 6% of total lipid were produced, testing one and two passages in high pressure homogenizer. Our results indicated the stearic acid solid nanoparticles did not exhibitalterations of size distribution, but average particle diameter increased along the time. On the other hand, the triestearin nanoparticles (both with one and two passage in high pressure homogeneizer) showed stability until two months of storage, in terms of average particle diameter, and the size distribution demonstrated to be more homogeneous for the systems submitted to two passages. As an overall conclusion, the microparticulated systems seemed to be more stable than the nanoparticulated ones, from the point of view of structure stability as well as in terms of beta-carotene preservation of beta-carotene. (AU)

FAPESP's process: 09/02028-4 - Incorporation of beta-carotene in micro and nanoparticulate solid lipid systems: production, stability and microstructural characterization
Grantee:Graziela Veiga de Lara Gomes
Support Opportunities: Scholarships in Brazil - Master