Advanced search
Start date
Betweenand


Ecological and evolutionary head shape associations in serpentiform lizards (Squamata)

Full text
Author(s):
Vinicius Anelli
Total Authors: 1
Document type: Master's Dissertation
Press: Ribeirão Preto.
Institution: Universidade de São Paulo (USP). Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (PCARP/BC)
Defense date:
Examining board members:
Tiana Kohlsdorf; Guarino Rinaldi Colli; Wilfried Klein; Katia Cristina Machado Pellegrino
Advisor: Tiana Kohlsdorf
Abstract

Convergence is ubiquitous to the striking diversity of life. Similar phenotypes originated by independent evolutionary processes are interpreted as evidence for the strength of natural selection. Elongated limb-reduced bodies are frequent and evolved multiple times among vertebrates. At least twenty-five independent origins of snakelike phenotypes are recognized for Squamata, frequently associated to fossorial environments. Explanations for the frequent occurrence of elongated limbless forms in association to fossoriality reside in the functional and biomechanical predictions of such phenotype for burrowing. Head plays an important functional role in excavating the soil during head-first burrowing. Evolutionary associations between skull shape and fossoriality were described for Gymnophthalmidae lizards, although patterns were generalized for both independent origins of snakelike, fossorial forms in the family. In our study, outline geometric morphometric was implemented in order to test the hypothesis that head shape varies among fossorial gymnophthalmids. Our findings indicate that such variations are substrate-dependent in Gymnophthalmidae, as sandswimmer gymnophthalmids exhibit smaller, narrow-snouted heads, whereas leaf-litter dwellers differ in head shape patterns, with rounded heads. Our study also tested associations between distinct selective regimes and the evolution of snakelike phenotypes for lizards in general, as from an ecomorphological database comprising 198 species from all continents, representing all the major lizard lineages recognized. Results indicate that skull shape evolved in association to locomotion and to microhabitat, as fossorial species evolve towards distinct adaptive optima according to the burrowing substrate, since head is in direct contact with soil during locomotion and subject to distinct selective demands imposed by substrate specificities. The advances described in our study contribute to clarify how convergent patterns evolve among squamates, unveiling considerable diversity in head shape associated to microhabitat use in fossorial species (AU)

FAPESP's process: 16/16385-7 - Morphological evolution of the skull in fossorial lineages of Gymnophthalmidae (Squamata)
Grantee:Vinicius Anelli
Support type: Scholarships in Brazil - Master