Advanced search
Start date

Use of galvanic wastes as secondary materials of agronomic interesting: evaluation of solubilization reactions and environmental risk

Full text
Cleiton dos Santos Mattos
Total Authors: 1
Document type: Doctoral Thesis
Press: Piracicaba.
Institution: Universidade de São Paulo (USP). Centro de Energia Nuclear na Agricultura (CENA/STB)
Defense date:
Examining board members:
Marcos Yassuo Kamogawa; Cassio Hamilton Abreu Junior; Márcio Koiti Chiba; Gilberto Batista de Souza; Márcia Andreia Mesquita Silva da Veiga
Advisor: Marcos Yassuo Kamogawa

This work aims evaluate the use of galvanic wastes of gold/silver-plating as micronutrients source (mainly copper and nickel) for plants, by studying the chemical reactions which determine the solubility and adsorption processes on the soil-solution-plant interface. For this purpose, galvanic wastes were characterized by ICP OES and FAAS, determining the levels of Al, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, Pb, S and Zn after acid digestion, detecting Cu in the range of 2 and 35% and Ni in the range of 0.007 and 9.7% (m/m), and low quantities of Cd, Cr and Pb compared to the previous ones. Physicochemical aspects characterize the wastes as brittle conglomerate, with possible structural ordination in the form of sulfates, oxides, hydroxides or carbonates, low hygroscopicity and facilitating, thus, agronomic application in the pulverized form. Solubility essays in aqueous media by flow system indicating the dependency of copper and nickel solubility with pH. Cupper would present better solubility in pH below 5, what did not happen, but simulations in chemical equilibrium software indicated copper solubility in the form of brochantite [Cu4SO4(OH)6] in pH below 3, and DRX analysis confirmed the their presence. Two of the wastes used presented nickel solubility in water, probably as NiCl2 or NiSO4, and all presented good solubilization when complexed with DTPA. Adsorption and diffusion studies of Cu and Ni in soils by water percolation in PVC column, after addiction of galvanic wastes tablets to the center, demonstrated low metals mobility and influence of their presence by the tablet dissolution, intensifying the adsorption and desorption reactions. When combined with the adsorption isotherms and sequential extraction, it concludes that the soils presented high maximum adsorption capacity and these metals are mostly bonded to less available fractions, but presenting an increasing availability after wastes addition. Solubility essays in the present of plants in a similar system to the adsorption experiment, however, with the wastes in the pulverized form, demonstrated the presence of Cu and Ni in the roots by the influence of the residues insertion and only nickel in the aerial parts, maybe by nutritional sufficiency of copper. The main reactions that occurred in the soil-solution-plant interface, as adsorption/desorption, precipitation/dissolution, complexation and redox, explain the mechanism of the higher or lower availability of these micronutrients, favoring determinate conditions by the chemical equilibrium concepts. Organic acids exuded in the rhizosphere can acidify the medium or complex the metals, increasing their solubility and favoring their transport to the plants. Therefore, it is recommended that the residues must be applied very close to the roots. Microbiological tests have shown that the wastes present low toxicity, and, associated with the low mobility of Cu and Ni and with the low influence of the Cd, Cr and Pb in the soil, it estimated to offer low environmental risk. The results set gives galvanic wastes of gold/silver-plating viability to be used as agricultural fertilizers to supply copper and nickel deficiencies, in line with the objectives of the National Solid Waste Policy, which encourages the recycling of hazardous materials, to get back to productive chain, thus avoiding the waste of its potential by means of the discard (AU)

FAPESP's process: 13/09732-4 - Galvanic waste use as secondary materials of interest agronomic: solubilization reactions and environmental risk evaluation
Grantee:Cleiton dos Santos Mattos
Support type: Scholarships in Brazil - Doctorate