Advanced search
Start date

Numerical simulation of hydrodynamics within fixed-bed bioreactor for vinasse treatment

Full text
Dayane Cristina Gomes Okiyama
Total Authors: 1
Document type: Master's Dissertation
Press: Pirassununga.
Institution: Universidade de São Paulo (USP). Faculdade de Zootecnica e Engenharia de Alimentos (FZE/BT)
Defense date:
Examining board members:
José Antonio Rabi; Rogers Ribeiro; Marcelo Zaiat
Advisor: José Antonio Rabi

Resulting from sugarcane juice distillation, vinasse is a by-product from ethanol industry. Despite its widespread use as fertirrigation at crops, direct deposition of vinasse into soils has raised environmental issues. Alternatively, it may undergo anaerobic treatment, which is very attractive in view of energy recovery as biogas while preserving vinasse quality as biofertilizer. Among anaerobic treatment systems, fixed-bed reactors come forward due to their operational stability. Their comprehensive modeling is prone to be complex so that the study of fluid flows prevailing inside is fundamental. Accordingly, the goal of this work was to numerically analyze and simulate the hydrodynamics within a particular upflow fixedbed reactor, namely anaerobic packed bed reactor. In general, results from simulations were compared with experimental counterparts as well as against results from well-known single-parameter models for non-ideal reactors. Existing data from hydrodynamic tests were then used, concerning operation at both start-up and shut-down and bioreactor stepwise feeding with tracer solution flow at 4,6 L/day and 2,3 L/day. Non-ideal reactor models comprised either low or high-dispersion together with continuous stirred-tank reactor model while COMSOL Multiphysics ® 4.3b CFD (computational fluid dynamics) software was employed for simulations. Retention time distribution (RTD) curves from simulations and from model calculations were compared to experimental ones. For operation at 2,3 L/day flow, no models proved to be suitable as far as shut-down operation is concerned, due to biomass accumulation inside the bioreactor. Remaining RTD curves suggested that reactor behavior resembles plug-flow type. Compared to non-ideal reactor models, CFD simulations proved to properly reproduce experimental data while being able to provide detailed and accurate information for process engineering towards effluent treatment. Furthermore, a numerical simulator was implemented as based on the lattice Boltzmann method (LBM) in order to deal with two-dimensional steady-state laminar flow inside a channel. As part of research work on LBM simulation of agroindustrial biosystems, aforesaid simulator contributed to LBM simulation of hydrodynamics within bioreactors for wastewater treatment in general. (AU)

FAPESP's process: 12/23459-6 - Lattice Boltzmann simulation of hydrodynamics inside fixed-bed bioreactor for vinasse treatment
Grantee:Dayane Cristina Gomes Okiyama
Support Opportunities: Scholarships in Brazil - Master