Advanced search
Start date
Betweenand


Effects of exercise training associated with creatine supplementation on bone mass of ovariectomized rats

Full text
Author(s):
Igor Hisashi Murai
Total Authors: 1
Document type: Master's Dissertation
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Escola de Educação Física e Esportes (EEFE/BT)
Defense date:
Examining board members:
Bruno Gualano; Rafael Yague Ballester; Edilamar Menezes de Oliveira
Advisor: Bruno Gualano
Abstract

The current literature indicates exercise training as one of the most used nonpharmacological strategies in the treatment and prevention of conditions that affect the bone tissue. Moreover, studies indicate that creatine supplementation may exert positive effects on bone mass gain. Thus, the aim of this study was to investigate the preventive effects of exercise training associated with creatine supplementation on bone loss in ovariectomized rats. Thus, sixty-five female Wistar rats were matched by body weight and randomly assigned into five experimental groups, as follows: 1) shammed (SHAM); 2) ovariectomized (OVX), sedentary and placebo-supplemented rats (PL); 3) OVX, sedentary and creatine-supplemented rats (CR); 4) OVX, trained and placebo-supplemented rats (PL+TR) and 5) OVX rats, trained and creatinesupplemented rats (CR+TR). The animals were submitted to a downhill running training protocol performed on a treadmill and supplemented with creatine on daily basis via gavage. Bone density were evaluated pre and post-intervention to obtain bone mineral content (BMC) and bone mineral density (BMD) from whole body and regional area, as well as body composition. Right femur was removed to biomechanical assessment. After the intervention, PL+TR group had higher BMC and BMD compared to the PL group (p=0.004 and p=0.020, respectively), while the CR+TR group experienced greater increases in BMC and tended to increase BMD compared to the CR group (p=0.011 and p=0.064, respectively). Biomechanical assessment demonstrated significantly higher femur maximum strength of both trained groups (PL+TR and CR+TR) compared to SHAM group (p=0.024 and p=0.020, respectively), PL group (p<0.001 and p<0.001) and CR group (p=0.002 and p=0.002). With respect to femur stiffness, no significant difference was observed from the SHAM group compared to both trained groups (p=0.973 vs. PL+TR and p=0.998 vs. CR+TR), however, significant difference was observed when compared to sedentary groups (p=0.048 vs. PL and p=0.024 vs. CR), moreover, significant difference was observed when the PL group was compared to PL+TR group (p=0.009), as well as the CR group was significantly different compared to the CR+TR group (p=0.043). There were no significant differences between PL and CR groups and between PL+TR and CR+TR groups along the study. Thus, we conclude that creatine supplementation showed no isolated, nor additive effects when combined with exercise training, however, exercise training promoted positive effects on bone tissue, thus emphasizing its unique therapeutic role in attenuating the loss of bone mass (AU)

FAPESP's process: 12/04695-0 - Effects of physical exercise associated with creatine supplementation on bone mass in ovariectomized rats
Grantee:Igor Hisashi Murai
Support Opportunities: Scholarships in Brazil - Master