Advanced search
Start date

The carbon cycle in the upper Xingu Basin: terrestrial, aquatic and atmospheric interactions.

Full text
Vania Neu
Total Authors: 1
Document type: Doctoral Thesis
Press: Piracicaba.
Institution: Universidade de São Paulo (USP). Escola Superior de Agricultura Luiz de Queiroz (ESALA/BC)
Defense date:
Examining board members:
Alex Vladimir Krusche; Jean Paul Laclau; Walter de Paula Lima; Marcelo Zacharias Moreira; Carlos Eduardo de Rezende
Advisor: Alex Vladimir Krusche

The objective of this research was to quantify the fluxes of carbon (C) input and output in a watershed during a hydrological year that represent important components for the C budget in an ecosystem. The watershed studied covered an area of 1319 ha, and is drained by the Darro River tributary, Xingu Basin, Mato Grosso state - Brazil. The area is characterized by a typical transition from evergreen tropical forest to Cerrado. In order to estimate the input and transport of C in the system, samples from 12 rain events were collected over the year and measured for dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) in the rainwater, throughfall, stemflow, overlandflow, soil solution, and groundwater. C fluxes were quantified in 13 sampling events for carbon dioxide (CO2) and methane (CH4) emissions from the stream and soil, and for DOC, DIC and particulate organic carbon (POC) exported by the stream. Mean annual DOC concentration in the rainwater was 6.7 ± 3.7 mg L-1 representing an input of 82.3 Kg C ha-1 yr-1. Throughfall represented the largest flow path of DOC in the system with an annual transport of 142.6 Kg C ha-1 yr-1. Stemflow and overlandflow contributed to 1 and 2% of the total DOC transported in the system. For dissolved inorganic carbon, the concentrations in aboveground compartments were very low, similar to what is expected as result of the equilibrium whith the atmosphere. In contrast, DIC concentration in the belowground flow paths was high due to supersaturation in relation to the CO2 concentrations in the atmosphere. Soil C emission was the largest carbon flow path in the basin, more than 6000 Kg C ha-1 yr-1, which represented 99% of C losses in the watershed. In the case of CH4 the soil acted as a C sink with a sequestration rate of 4.37 ± 0.09 Kg C ha-1 yr-1. The stream showed elevated fluxes of CO2 and CH4 of more than 63000 Kg C ha-1 yr-1 . However, compared to the entire basin area the losses from the stream were small (56.2 ± 0.07 Kg C ha-1 yr-1). Although the DOC concentration in the stream was low, it represented the main organic carbon loss component, with a flux of 1.6 Kg C ha-1 yr-1. Losses of DIC and POC from the stream amounted around 0.9 Kg C ha-1 yr-1 and 0.01 Kg C ha-1 yr-1, respectively. The high DOC concentrations in aboveground flow paths exibited clear seasonal variations, in part problably as a result of massive human activities in the region. Also, the high concentrations of DIC in the soil solution and in groundwater during the rainy season, associated with the highest CO2 fluxes, indicated the strong connectivity between terrestrial and aquatic environments. (AU)

FAPESP's process: 05/55758-9 - The carbon cycle in the drainage basin of the river Cuieiras, Amazonas: of the interactions between terrestrial and aquatic environments to the exports through discharge and evasion of CO2
Grantee:Vania Neu
Support Opportunities: Scholarships in Brazil - Doctorate