Development of polymeric matrix as ascorbic acid v... - BV FAPESP
Advanced search
Start date
Betweenand


Development of polymeric matrix as ascorbic acid vehicle: characterization and stability evaluation

Full text
Author(s):
Vitor Augusto dos Santos Garcia
Total Authors: 1
Document type: Doctoral Thesis
Press: Pirassununga.
Institution: Universidade de São Paulo (USP). Faculdade de Zootecnica e Engenharia de Alimentos (FZE/BT)
Defense date:
Examining board members:
Rosemary Aparecida de Carvalho; Mônica Roberta Mazalli Medina; Classius Ferreira da Silva; Fernanda Maria Vanin; Anna Cecilia Venturini
Advisor: Rosemary Aparecida de Carvalho
Abstract

The administration of active ingredients through the oral mucosa is an efficient way to deliver drugs and nutrients because it offers various advantages such as easy application, avoiding the hepatic metabolism of the first pass and potentially improving the bioavailability these substances. Acerola and camu-camu have high concentration of vitamin C and are considered sources of different active compounds, however the vitamin C present in fruits is easily oxidized by environmental factors, and such fruits are poorly accessible to population consumption. Orally disintegrating films (ODF) can provide rapid disintegration and easy administration, which makes them interesting materials to deliver compounds with pharmaceutical or nutritional properties. This work aimed at the development and characterization of orally disintegrating films based on starch and gelatin with addition of acerola and camu-camu dry extract produced by spray dryer as an alternative to vitamin C administration. ODFs were produced with casting technique by varying the ratio of starch and gelatin. Sorbitol (20 g / 100 g polymer) was used as plasticizer, with constant the concentration of polymer (2 g / 100 g filmogenic solution), and dry extracts of acerola and camu-camu (4 g / 100 g filmogenic solution). Acerola and camu-camu dry extracts were characterized regarding vitamin C concentration and stability (30 °C, RH 75% and 40 °C, RH 75%). ODFs were characterized considering thickness, mechanical properties, contact angle, FT-IR, scanning electron microscopy, vitamin C concentration, antioxidant activity, antimicrobial activity, vitamin C stability, disintegration time, stability of the scavenging activity of DPPH• radical, and sensory evaluation. Dry extracts showed good stability for vitamin C and antioxidant compounds (scavenging activity of DPPH• radical). ODFs without extract addition, regardless of the formulation, were homogeneous, without insoluble particles and with high film formation capacity. Reduced disintegration time and pH similar to oral pH was observed for ODFs with high starch concentration. After the addition of extracts, ODFs presented decreased disintegration time and good sensorial acceptation, antioxidant properties and stability of the scavenging activity of DPPH• radical. Surface pH of films with acerola dry extract was the closest to oral pH when compared with films with camu-camu dry extracts. However, ODFs with acerola dry extract showed reduced stability of vitamin C regarding storage time, whereas films with camu-camu dry extract showed better stability. In general, the formulation produced only with starch (100 g starch / 100 g polymer) presented higher concentration of vitamin C at the end of stability assay performed at 30 °C and 75% relative humidity, as well as high stability of active compounds (DPPH) and high uniformity rate in vitamin C distribution in the orally disintegrating film. Thus, ODFs can be considered a good alternative for the supplementation of vitamin C. (AU)

FAPESP's process: 13/03143-7 - Development of polymer matrices as carriers of ascorbic acid: characterization and evaluation of stability
Grantee:Vitor Augusto dos Santos Garcia
Support Opportunities: Scholarships in Brazil - Doctorate