Advanced search
Start date
Betweenand


Tryptophan metabolism in melanomas:what do microenvironment cells can say?

Full text
Author(s):
Renan Orsati Clara
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Conjunto das Químicas (IQ e FCF) (CQ/DBDCQ)
Defense date:
Examining board members:
Ana Campa; Jair Ribeiro Chagas; Giselle Zenker Justo; Fernando Salvador Moreno
Advisor: Ana Campa
Abstract

Melanoma is composed of malignant cells and also by a stromal support that includes fibroblasts, immune cells, endothelial cells, extracellular matrix, among other factors. Thus, tumors are not separate entities; they actively interact with the surrounding microenvironment bi-directionally through molecular signals that modulate the malignant phenotype. One of biochemical signals for the development of this phenotype occurs by Trp catabolism through kynurenine pathway, that generates compounds with diverse biological activities, which in tumors are involved with tolerance and imunoescape and therefore with poor prognosis for patients. To date only the consumption of Trp and formation of a single metabolite, kynurenine (KYN), has been associated with malignant melanomas. In order to enlarge and clarify the biochemical mechanisms of this amino acid metabolism in melanomas, we have studied more than fifteen compounds of all catabolic routes of Trp in skin cells, immune cells, tumor cell lines and clinical samples of melanoma. In an unique way we could observe that the skin cells has superior ability to synthesize KYN when compared to tumor cell lines, demonstrating that the peritumoral catabolism of Trp may be responsible for the phenomena of immune tolerance and escape. Furthermore, the Trp metabolism may be involved in skin homeostasis mechanisms, since these cells produce specific compounds with biological activity in this organ. The immune cells have a completely different metabolic profile among them: monocytes, macrophages and dendritic cells have greater KYN pathway activation, and lymphocytes and neutrophils possess greater induction of the route that generates serotonin and melatonin. Even in different macrophages phenotypes, M1 and M2a, we observed specific metabolic marks, which may be related to the anti- or pro-tumoral activity of these cells in the tumor microenvironment. In clinical samples, although the main difference between nevi and melanomas is the concentration of KYN, a range of other changes in Trp metabolism were observed, which shows the complex magnitude of this metabolism in the skin pathophysiology (AU)

FAPESP's process: 10/18477-0 - Tryptophan metabolism in melanomas: What do the microenvironment cells tell us?
Grantee:Renan Orsati Clara
Support Opportunities: Scholarships in Brazil - Doctorate