Advanced search
Start date
Betweenand


Polymorphism in Adenosine Receptors and their Associations with Different Pathophysiological Characteristics and Evaluation of Components in the Biosynthesis of Adenosine in Patients with Sickle Cell Disease.

Full text
Author(s):
Carolina Dias Carlos
Total Authors: 1
Document type: Master's Dissertation
Press: Ribeirão Preto.
Institution: Universidade de São Paulo (USP). Faculdade de Medicina de Ribeirão Preto (PCARP/BC)
Defense date:
Examining board members:
Rodrigo Alexandre Panepucci; Eduardo Magalhães Rego; Flávio Henrique da Silva
Advisor: Rodrigo Alexandre Panepucci
Abstract

In sickle cell disease in low oxygen tension, mutant hemoglobin S (HbS) undergoes polymerization promoting sickling of red blood cells that can adhere to vascular endothelium, causing vessel occlusion (VO) and tissue ischemia (painful crises) that characterize the clinical disease. In addition, sickle cell patients have other clinical manifestations such as priapism, bone disorders, certain pulmonary complications among others. In addition to the erythroid cells, endothelial cells, white cells and platelets also play a key role in the pathophysiology of sickle cell anemia. Hydroxyurea (HU) in sickle cell anemia, increases the production of fetal hemoglobin (HbF) in erythroid cells, reducing the HbS polymerization, reducing the clinical symptoms of patients. The increase in HbF, however, does not necessarily imply clinical improvement, thus indicating the potential effects of HU on other processes. Recent studies relating asthma and priapism with high levels of adenosine. Due to this importance of adenosine-related pathologies common to AF, we aimed to identify gene polymorphisms in adenosine receptors and adenosine deaminase and verify the possible association between clinical manifestations, and to investigate the role of HU in the modulation of markers involved synthesis and degradation of adenosine. We analyzed several polymorphic sites in genes that encode ADORA1, ADORA 2b, 3 and ADORA ADA, according to the genotype in patients with AF, comparing affected and unaffected. In addition we assessed the differential expression of ADA mRNA by HU in monocytes of these patients, comparing treated and untreated, and also evaluated by flow cytometry modulation of surface markers CD39, CD73 and CD26 by HU. Statistical analysis was performed using the software GenePop 3.4 for association analysis, calculation of HWE, GraphPad Prism 5, Arlequin for identification of linkage disequilibrium, haplotypes, heterozygosity and SAS 9.13 for association of haplotypes features. The results showed that patients treated with HU showed an increase in mRNA expression of ADA, increased expression of CD26 on monocytes and decreased CD39 on lymphocytes. No significant changes in relation to CD73. We also found an increased frequency of allele T (SNP rs1685103) present in a gene associated with ADORA affected patients with acute chest syndrome. Although not statistically significant, agrees with literature data. ADORA 2B gene, we found association of the SNP 1007 C> T in the development of STA indicating the T allele as a risk factor for the C allele and bone changes. For the SNP 968 G> T was associated with bone disorders. In haplotype analysis between SNPs 968 G> T and 1007 C> T found association of haplotypes ht2 and HT3 with STA as a risk factor for pulmonary hypertension ht2. ht1 for priapism, stenosis and bone disorders / stroke. The three haplotypes formed by SNPs 968 G> T, 1007 C> T and rs16851030, we found association between ht1, HT3 and HT4 among those affected with priapism, characterizing it as a risk haplotype and also ht1 ht6 associated with renal and / AVC. We conclude that hydroxyurea participates in modulating the expression of adenosine deaminase of CD26 on monocytes and CD39 on lymphocytes. Moreover, he showed the importance of polymorphic sites in this gene and ADORA 2B ADORA1 involved in the pathophysiology of clinical manifestations of sickle cell disease. Associations of SNPs in ADORA 1 and ADA should be better studied in a larger number of patients. The determination of these polymorphisms associated with different clinical characteristics can lead to a better understanding of the pathophysiological processes of sickle cell anemia, leading to the identification of patients at risk, enabling a rational handling of the same in terms of specific care, or even the determination of targets for the development of alternative therapies. (AU)

FAPESP's process: 08/07514-1 - POLYMORPHISM IDENTIFICATION ON ADENOSINE RECEPTORS AND THEIR ASSOCIATIONS WITH DISTINCT PHYSIOPATHOLOGICAL CHARACTERISTICS OF SICKLE CELL ANEMIA PATIENTS
Grantee:Carolina Dias Carlos
Support Opportunities: Scholarships in Brazil - Master