Advanced search
Start date
Betweenand


Molecular characterization of DNA repair in mouse olfactory epithelium

Full text
Author(s):
Fernanda Teixeira Rowies
Total Authors: 1
Document type: Master's Dissertation
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Conjunto das Químicas (IQ e FCF) (CQ/DBDCQ)
Defense date:
Examining board members:
Nadja Cristhina Souza Pinto; Nicolas Carlos Hoch; Fábio Papes; Valeria Valente
Advisor: Nadja Cristhina Souza Pinto
Abstract

The first cells responsible for olfactory perception are the olfactory sensory neurons (OSNs), located in the olfactory epitelhium (OE) in the nasal cavity, which recognize volatile molecules in the air, called odorants, through olfactory receptors. Unlike neurons located in the central nervous system (CNS), which are relatively protected from exogenous toxins, OSNs are in constant contact with genotoxic agents, including atmospheric oxygen. Moreover, in contrast with most neurons in CNS, OSNs are periodically replaced through adult neurogenesis, therefore, having shorter lifespan than most neurons. Olfactory function decreases during normal and pathological aging, through mechanisms that are still not fully understood. In neurodegenerative diseases, olfactory loss is an early symptom and, in some cases, is used as a treatment response marker. DNA repair defects have been causally linked with neurodegeneration in different experimental models. However, it still unclear whether DNA repair alterations contribute to olfactory loss in these conditions, probably because there are no data available on DNA repair dynamic in OSNs. Therefore, our goal was to characterize the DNA repair pathways present in precursor and mature OSNs populations. We analyzed gene expression data from age-related and differentiation stage-related transcriptomes of these neurons, and validated the results by real time PCR using mouse OE samples from C57BL/6J lineage in two different ages (newborns and three weeks old). Our results indicate that OSNs are proficient in all DNA repair pathways investigated, showing detectable expression of essential genes from each pathway. When comparing populations enriched for mature OSNs or its precursors, our results suggest that the activities of at least four repair pathways are lower in young mice than in newborns, suggesting that DNA repair expression decreases during OSNs differentiation. This observation is consistent with published data showing that the expression and activities of repair proteins is lower in terminally differentiated than in proliferative cells . To test the hypothesis that OSNs would accumulate more DNA damage than CNS neurons, since they are in constant contact wtih genotoxic agents, we compared DNA damage levels in nuclear and mitochondrial DNA from OE, olfactory bulb (OB), and temporal cortex (TC) samples. We chose to use the TC region and a non-olfactory related control as it does not show significant adult neurogenesis and it is not exposed to external environment. Lesion rate wascalculated from data obtained by long extension PCR. Results from 3 weeks old mice OE, OB and TC samples showed that the amplification in TC samples is much lower than OE or OB samples, suggesting that neurons in CNS accumulate more damage than neurons that undergo neurogenesis. Besides, lesion frequency was higher in OE mitochondrial DNA (mtDNA) than in OB, suggesting that the constant exposure to atmospheric oxygen may contribute to accumulation of mtDNA lesions. This work demonstrates, for the first time, that OSNs are proficient in at least four DNA repair pathways, and that expression of key genes in these pathways decreases with differentiation. These results will contribute to better our understanding of the mechanisms involved in genomic stability in such unique cell types. (AU)

FAPESP's process: 17/13723-1 - Characterization of molecular mechanisms of DNA repair in mouse olfactory epithelium
Grantee:Fernanda Teixeira Rowies
Support Opportunities: Scholarships in Brazil - Master