Advanced search
Start date

Microbial characterization of 4-Nonylphenol removal and degradation in anaerobic Fluidized Bed Reactor in upscale

Full text
Henrique de Souza Dornelles
Total Authors: 1
Document type: Master's Dissertation
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Escola de Engenharia de São Carlos (EESC/SBD)
Defense date:
Examining board members:
Maria Bernadete Amancio Varesche Silva; Jorge Akutsu; Paulo Clairmont Feitosa de Lima Gomes
Advisor: Maria Bernadete Amancio Varesche Silva

4-Nonylphenol (4-NP) is the main product formed in the Nonylphenol ethoxylate degradation, nonionic surfactant used in formulations of domestic and industrial use. The objective of this study was to develop a method to determine 4-NP in HPLC; to evaluate the 4-NP removal in batch reactors with co-substrates (ethanol, methanol and fumarate) and removal and degradation of 4-NP in anaerobic Fluidized Bed Reactor (AFBR) on an enlarged scale (20L), as well as characterize the microbial community established in the support material by PCR / DGGE techniques of the 16S RNAr gene and massive sequencing by the Illumina-Miseq® platform. The AFBR was filled with sand as carrier material, operated with Hydraulic Retention Time (HRT) of 18.2±1.1 hours and fed with synthetic sewage plus 4-NP PESTANAL® (Sigma-Aldrich®). Monitoring of the 4-NP concentration and organic matter, as well as physical-chemical parameters were performed to evaluate the stability of the reactor for the removal and degradation of the compound of interest. Reactor operation was divided into different stages, with inoculation of the RALF in closed circuit, adaptation to the culture medium and subsequent phases with 4-NF addition. The addition of 4-NP (from 288.97±96.49 to 469.98±182.42 µg L-1) in batch reactors favored the average accumulated methane production (from 2,292.3 to 2,744.7 µmol, respectively) for all tested co-susbtrates, however, delayed the mean time to start production (from 15.9 h to 107.9 h), as well as reduced production rate (from 24.4 to 10.9 µmol d-1). The highest accumulated values of methane production (3,163.68 ± 169.17 µmol) and COD removal (75.52±0.34% for the initial COD of 1,242±27.48 mg L-1) were verified for the addition of 4-NP and Fumarate, compared to the other tests with addition of 4-NP. For the 4-NP removal in batch reactors the values did not differ significantly. Mean values of COD removal for the AFBR were 90.34±6.1% (Phase I), 94.0±1.2% (Phase II), 94.0±1.2% (Phase III) and 97.0±1.3% (Phase IV) and 4-NF of 73.2±11.1% (Phase II), 67.3±7.3% (Phase III) and 77.88±8.9% (Phase IV). Different concentrations of 4-NP applied to the AFBR did not affect the COD removal efficiency and promoted the selection of the microorganisms that composed the bed biomass. The most abundant genera identified in the reactor without addition of 4-NP were Prolixibacter, Geothrix, Klebsiella, Lactobacillus and Geobacter. The genotypes with the highest relative abundance identified after addition of 4-NP were as follows: Geothrix, Holophaga, Elusimicrobium, Paludibacter, Lactobacillus, Aeromonas, Pelobacter, Aquaspirillum, Pseudomonas, Delftia, Acinetobacter, Arcobacter, Ignavibacterium, Treponema, Lysinibacillus and Enterococcus. (AU)

FAPESP's process: 17/22850-7 - Microbial characterization of removal and degradation of 4-nonylphenol in fluidized bed biofilm reactor on increased scale
Grantee:Henrique de Souza Dornelles
Support type: Scholarships in Brazil - Master