Advanced search
Start date
Betweenand


Quantum effects and localization in optomechanical systems

Full text
Author(s):
Thales Figueiredo Roque
Total Authors: 1
Document type: Doctoral Thesis
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Instituto de Física Gleb Wataghin
Defense date:
Examining board members:
Antonio Vidiella Barranco; Gustavo Silva Wiederhecker; Marcos César de Oliveira; Celso Jorge Villas Boas; Reginaldo de Jesus Napolitano
Advisor: Antonio Vidiella Barranco
Abstract

Optomechanical systems are systems in which radiation interacts with mechanical degrees of freedom via radiation pressure. These systems are well known for allowing great flexibility and high control over the optomechanical interaction. In this thesis, we present a theoretical investigation about optomechanical systems. This investigation can be divided in two parts: the first part is devoted to the generation of nonclassical states in optomechanical systems, and the second part is devoted to the study of Anderson localization in optomechanical arrays. In the first part, we study, firstly, the generation of optical sub-Poissonian states in the quantum nonlinear regime. This topic has been previously investigated in a conventional optomechanical system with one optical cavity coupled to one mechanical oscillator. Here, we investigate a system with two optical cavities coupled to one mechanical oscillator. We show that our system allows the generation of stronger sub-Poissonian states in comparison with the conventional system. In addition, the states generated in our system are more robust against thermal noise. Next, we investigate the generation of squeezed steady states of the mechanical oscillator in a quadratic optomechanical system operating in the quantum linear regime. We show that, if the optical cavity is pumped by lasers with specific frequencies and amplitudes, it is possible to generate such states. In the second part, we investigate Anderson localization in disordered optomechanical arrays. Optomechanical arrays are periodic arrays of optical and mechanical modes, which interact with each other via optomechanical coupling. In a realistic scenario, due to imprecisions in the fabrication of such a structure, the parameters of the system will be disordered. We show that the eigenstates in this system are exponentially localized. Furthermore, we show the existence of two regimes in disordered optomechanical arrays: the weak coupling regime and the strong coupling regime. The transition between these regimes displays nontrivial features that could be used to detect localization experimentally. We study also the classical dynamics of disordered optomechanical arrays in the unstable regime. This is a very challenging topic, since the unstable regime is essentially nonlinear. We show that, for a specific regime of parameters, it is possible to use the linear approximation for small times, and the linear results give us important informations about the nonlinear dynamics. We analyze briefly the emergence of chaotic behavior in the regime (AU)

FAPESP's process: 12/10476-0 - Optomechanical systems in a cavity with three mirrors.
Grantee:Thales Figueiredo Roque
Support type: Scholarships in Brazil - Doctorate