Advanced search
Start date
Betweenand


Evaluation of cellular localization and cytotoxicity by fluorescence microscopy of ruthenium complexes as nitric oxide deliver agents. Studies of Chemical, kinetic and biological aspects

Full text
Author(s):
Renata Bortoleto da Silveira
Total Authors: 1
Document type: Master's Dissertation
Press: Ribeirão Preto.
Institution: Universidade de São Paulo (USP). Faculdade de Ciências Farmacêuticas de Ribeirão Preto (PCARP/BC)
Defense date:
Examining board members:
Roberto Santana da Silva; Roberto Etchenique; Adelino Vieira de Godoy Netto
Advisor: Roberto Santana da Silva
Abstract

Nitric Oxide is biosynthesized in different cells of the animal organism. It is related to numerous physiological processes. There is apparently a relationship between the effects mediated by NO and the microenvironment. Thus, the cellular response observed depends on the location of the radical molecule, the duration of exposure and its concentration. Thus, an antagonistic effect of NO is observed with respect to the biology of tumors, admitting that low concentrations of NO stimulate the proliferation of tumor cells and high concentrations promote the tumoricidal activity. In this sense, the present work aimed the development of a new ruthenium complex donor of nitric oxide coordinated to the fluorescent ligand of Acridine. The coordination of Ruthenium to the nitrogen heterocyclic ligand allowed to obtain the fluorescent compound [Ru(NO2)(bpy)(AO)2NO](PF6)2, where bpy = 2,2\' bipyridine and AO = Acridine Orange, which was characterized by UV-Vis, FITR and mass spectrometry. Photochemical experiments revealed that the [Ru(NO2)(bpy) (AO)2NO](PF6) 2 complex presented a fluorescence quantum yield value, in ethanol, about 20 % lower than the free binder. However, the quantum yield of singlet oxygen in water was approximately 40 % higher compared to Acridine Orange. UV-vis emission spectroscopy and UV-vis absorption spectroscopy have shown that [Ru (NO2)(bpy)(AO)2NO](PF6) 2 is apparently more photostable and suffers less fluorescence suppression when irradiated at 470 nm compared with Acridine Orange. Cell cytotoxicity assays with irradiation using dose of 5 J cm-2 demonstrated that the coordination of Acridine Orange dye to the complex decreases its cytotoxicity against the metastatic tumor cell line studied, possibly by preventing the mechanism of intercalation of the planar ligand to DNA. Monitoring by fluorescence microscopy revealed the preferential localization of the compound [Ru(NO2)(bpy) (AO)2NO] (PF6) by the cell nucleus possibly due to coordinated Acridine Orange, which has a tropism by DNA. These results emphasize the importance of the ligand group for the localization of the complex, as well as for the cytotoxic activity of the same (AU)

FAPESP's process: 16/04833-5 - Evaluation of cellular localization and cytotoxicity by fluorescence microscopy of ruthenium complexes as nitric oxide deliver agents: studies of chemical, kinetic and biological aspects
Grantee:Renata Bortoleto da Silveira
Support type: Scholarships in Brazil - Master