Surface functionalization and biomolecules attachm... - BV FAPESP
Advanced search
Start date
Betweenand


Surface functionalization and biomolecules attachment study upon metallic oxides

Full text
Author(s):
Luciana Daniele Trino
Total Authors: 1
Document type: Doctoral Thesis
Press: Bauru. 2018-06-08.
Institution: Universidade Estadual Paulista (Unesp). Faculdade de Ciências. Bauru
Defense date:
Advisor: Paulo Noronha Lisboa Filho
Abstract

Titanium and its alloys are used in a variety of applications, including orthopedic and dental implants because of their recognized biocompatibility. However, failures and subsequent clinical side effects are still recurrent in implants. In this context, improvements can be achieved by designing biom aterials in which the bulk and surface of the titanium are independently tailored . Thus, nanostructured metal oxides thin films , such as TiO 2 and ZnO, can improve the physicochemical properties, biocompatibility and corrosion resistance of titanium implant s. In addition, the conjugation of biomolecules, such as peptides derived from the dentin matrix 1 protein (DMP1), on the surface of the metal oxides can improve their bioactivity, accelerating the os t eointegration process. Therefore, the objective of thi s work was to functionalize metal oxides with different bifunctional molecules and to investigate the physicochemical properties of silane, amino, carboxylic acid, thiol and hydroxyl groups that act as spacers between metal oxides and DMP1 peptides. In add ition, biocompatibility, mineralization, corrosion and tribocorrosion resistance of the bio - functionalized surfaces were performed. In this work, nanosized TiO 2 and ZnO thin films were synthesized by sol - gel method and deposited by spin coating technique o n titanium substrates. Subsequently, the thin films of metal oxides were functionalized with (3 - aminopropyl) trimethoxysilane (APTMS), 3 - (4 - aminophenyl) propionic acid (APPA), 3 - mercaptopropionic acid (MPA) or polyethylene glycol (PEG), which acted as spac ers between the metal oxides and the DMP1 peptides. The physicochemical analyzes by XPS, confocal microscopy, AFM, contact angle and surface energy revealed the effective modification of the metal oxides surfaces with APTMS, APPA, MPA and PEG. After the bi o - functionalization the physicochemical analyzes confirmed the presence of the DMP1 peptides on the surface of the metal oxides. In addition, biological tests indicated that the peptides could modulate the affinity, proliferation and differentiation of hum an mesenchymal stem cells. For the sample containing the titanium dioxide, better results were observed for the TiO 2 functionalized with MPA and the DMP1 peptides. On the other hand, better biocompatibility results were observed for ZnO functionalized with APPA and peptides. In addition, the immobilization of the DMP1 peptides through the APPA and MPA spacers for both oxides led to the formation of apatite biominerals. The electrochemical results indicated an increase in corrosion resistance in the bio - func tionalized materials, and better results were observed for TiO 2 when compared to ZnO. In addition, the tribocorrosion analysis presented lower mass loss for the bio - functionalized TiO 2 samples. Considering the aspects of biocompatibility, osteogenic differ entiation, mineralization, resistance to corrosion and tribocorrosion, the TiO 2 functionalized with MPA and DMP1 peptides presented the best results. Therefore, the results suggest that the bio - functionalization of metal oxides can design better quality im plants applied to regenerative medicine (AU)

FAPESP's process: 14/01713-3 - Functionalization and adsorption studies on thin oxide films
Grantee:Luciana Daniele Trino Albano
Support Opportunities: Scholarships in Brazil - Doctorate